webots - Webots Robot Simulator

  •        84

Webots is an open-source robot simulator released under the terms of the Apache 2.0 license. It provides a complete development environment to model, program and simulate robots, vehicles and biomechanical systems. You can download pre-compiled binaries for Windows, macOS and Linux of the latest release, as well as older releases and nightly builds.

https://cyberbotics.com
https://github.com/cyberbotics/webots

Tags
Implementation
License
Platform

   




Related Projects

simulator - A ROS/ROS2 Multi-robot Simulator for Autonomous Vehicles

  •    CSharp

Check out our latest news and subscribe to our mailing list to get the latest updates. LG Electronics America R&D Lab has developed an HDRP Unity-based multi-robot simulator for autonomous vehicle developers. We provide an out-of-the-box solution which can meet the needs of developers wishing to focus on testing their autonomous vehicle algorithms. It currently has integration with The Autoware Foundation's Autoware.auto and Baidu's Apollo platforms, can generate HD maps, and can be immediately used for testing and validation of a whole system with little need for custom integrations. We hope to build a collaborative community among robotics and autonomous vehicle developers by open sourcing our efforts.

gazebo - Open source robotics simulator.

  •    C++

This is the Gazebo simulator. Gazebo simulates multiple robots in a 3D environment, with extensive dynamic interaction between objects. BUILD_TESTING (bool) [default False] Include the test suite compilation in the default make call (make all).

morse - The Modular OpenRobots Simulation Engine

  •    C

MORSE (Modular OpenRobots Simulation Engine) is an academic robotic simulator, based on the Blender Game Engine and the Bullet Physics engine. It is a BSD-licensed project (cf LICENSE). It is meant to be versatile (simulation of field robotics, indoor robotics, human robot interaction, multi-robots systems) and allow simulation at different levels (from raw cameras to high-level semantics).

simbody - High-performance C++ multibody dynamics/physics library for simulating articulated biomechanical and mechanical systems like vehicles, robots, and the human skeleton

  •    C++

Simbody is a high-performance, open-source toolkit for science- and engineering-quality simulation of articulated mechanisms, including biomechanical structures such as human and animal skeletons, mechanical systems like robots, vehicles, and machines, and anything else that can be described as a set of rigid bodies interconnected by joints, influenced by forces and motions, and restricted by constraints. Simbody includes a multibody dynamics library for modeling motion in generalized/internal coordinates in O(n) time. This is sometimes called a Featherstone-style physics engine. Read more about Simbody at the Simbody homepage.

AirSim - Open source simulator based on Unreal Engine for autonomous vehicles from Microsoft AI & Research

  •    C++

AirSim is a simulator for drones (and soon other vehicles) built on Unreal Engine. It is open-source, cross platform and supports hardware-in-loop with popular flight controllers such as PX4 for physically and visually realistic simulations. It is developed as an Unreal plugin that can simply be dropped in to any Unreal environment you want.


champ - 𓃡 Quadruped Robot based on MIT Cheetah I

  •    C++

ROS Packages for CHAMP Quadruped Controller. CHAMP is an open source development framework for building new quadrupedal robots and developing new control algorithms. The control framework is based on "Hierarchical controller for highly dynamic locomotion utilizing pattern modulation and impedance control : implementation on the MIT Cheetah robot".

carla - Open-source simulator for autonomous driving research.

  •    C++

CARLA is an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions. If you want to benchmark your model in the same conditions as in our CoRL’17 paper, check out Benchmarking.

habitat-sim - A flexible, high-performance 3D simulator for Embodied AI research.

  •    C++

The design philosophy of Habitat is to prioritize simulation speed over the breadth of simulation capabilities. When rendering a scene from the Matterport3D dataset, Habitat-Sim achieves several thousand frames per second (FPS) running single-threaded and reaches over 10,000 FPS multi-process on a single GPU. Habitat-Sim simulates a Fetch robot interacting in ReplicaCAD scenes at over 8,000 steps per second (SPS), where each ‘step’ involves rendering 1 RGBD observation (128×128 pixels) and rigid-body dynamics for 1/30sec. Habitat-Sim is typically used with Habitat-Lab, a modular high-level library for end-to-end experiments in embodied AI -- defining embodied AI tasks (e.g. navigation, instruction following, question answering), training agents (via imitation or reinforcement learning, or no learning at all as in classical SensePlanAct pipelines), and benchmarking their performance on the defined tasks using standard metrics.

mrpt - :zap: The Mobile Robot Programming Toolkit (MRPT)

  •    C++

Mobile Robot Programming Toolkit (MRPT) provides C++ libraries aimed at researchers in mobile robotics and computer vision. Libraries include SLAM solutions, 3D(6D) geometry, SE(2)/SE(3) Lie groups, probability density functions (pdfs) over points, landmarks, poses and maps, Bayesian inference (Kalman filters, particle filters), image processing, obstacle avoidance, etc. MRPT also provides GUI apps for Stereo camera calibration, dataset inspection, and much more. See this PPA for nightly builds from the develop branch, or this one for stable releases.

flightmare - An Open Flexible Quadrotor Simulator

  •    C++

Flightmare is a flexible modular quadrotor simulator. Flightmare is composed of two main components: a configurable rendering engine built on Unity and a flexible physics engine for dynamics simulation. Those two components are totally decoupled and can run independently from each other. Flightmare comes with several desirable features: (i) a large multi-modal sensor suite, including an interface to extract the 3D point-cloud of the scene; (ii) an API for reinforcement learning which can simulate hundreds of quadrotors in parallel; and (iii) an integration with a virtual-reality headset for interaction with the simulated environment. Flightmare can be used for various applications, including path-planning, reinforcement learning, visual-inertial odometry, deep learning, human-robot interaction, etc. Installation instructions can be found in our Wiki.

mujoco - Multi-Joint dynamics with Contact. A general purpose physics simulator.

  •    C

MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and development in robotics, biomechanics, graphics and animation, machine learning, and other areas which demand fast and accurate simulation of articulated structures interacting with their environment. DeepMind has acquired MuJoCo, and we are currently making preparations to open source the codebase. In the meantime, MuJoCo is available for download as a free and unrestricted precompiled binary under the Apache 2.0 license from mujoco.org.

rex-gym - OpenAI Gym environments for an open-source quadruped robot (SpotMicro)

  •    Python

The goal of this project is to train an open-source 3D printed quadruped robot exploring Reinforcement Learning and OpenAI Gym. The aim is to let the robot learns domestic and generic tasks in the simulations and then successfully transfer the knowledge (Control Policies) on the real robot without any other manual tuning. This project is mostly inspired by the incredible works done by Boston Dynamics.

iGibson - A Simulation Environment to train Robots in Large Realistic Interactive Scenes

  •    C

iGibson is a simulation environment providing fast visual rendering and physics simulation based on Bullet. iGibson is equipped with fifteen fully interactive high quality scenes, hundreds of large 3D scenes reconstructed from real homes and offices, and compatibility with datasets like CubiCasa5K and 3D-Front, providing 8000+ additional interactive scenes. Some of the features of iGibson include domain randomization, integration with motion planners and easy-to-use tools to collect human demonstrations. With these scenes and features, iGibson allows researchers to train and evaluate robotic agents that use visual signals to solve navigation and manipulation tasks such as opening doors, picking up and placing objects, or searching in cabinets. [12/1/2020] Major update to iGibson to reach iGibson v1.0, for details please refer to our arxiv preprint.

carma-platform - CARMA Platform is built on robot operating system (ROS) and utilizes open source software (OSS) that enables Cooperative Driving Automation (CDA) features to allow Automated Driving Systems to interact and cooperate with infrastructure and other vehicles through communication

  •    C++

CARMASM advances research and development to accelerate market readiness and deployment of cooperative driving automation, while advancing automated driving technology safety, security, data, and artificial intelligence. It encourages collaboration and participation by a community of engineers and researchers to advance understanding of cooperative driving automation using open source software (OSS) and agile project management practices. CARMA is a reusable, extensible platform for controlling SAE level 2 connected, automated vehicles (AVs). It provides a rich, generic API for third party plugins that implement vehicle guidance algorithms to plan vehicle trajectories. It is written in C++ and runs in a Robot Operating System (ROS) environment on Ubuntu. The platform can be reused on a variety of properly equipped vehicles. Migration has begun from the ROS 1 framework to ROS 2.

GibsonEnv - Gibson Environments: Real-World Perception for Embodied Agents

  •    C

You shouldn't play video games all day, so shouldn't your AI! We built a virtual environment simulator, Gibson, that offers real-world experience for learning perception. I. being from the real-world and reflecting its semantic complexity through virtualizing real spaces, II. having a baked-in mechanism for transferring to real-world (Goggles function), and III. embodiment of the agent and making it subject to constraints of space and physics via integrating a physics engine (Bulletphysics).

free_gait - An Architecture for the Versatile Control of Legged Robots

  •    C++

NOTICE: This software is not supported anymore! The authors of this software have changed their affiliation and do not work on this project anymore. Please excuse any inconvenience this might cause. If you are interested in working with the ANYmal robot, please reach out to ANYbotics. Free Gait is a software framework for the versatile, robust, and task-oriented control of legged robots. The Free Gait interface defines a whole-body abstraction layer to accommodate a variety of task-space control commands such as end effector, joint, and base motions. The defined motion tasks are tracked with a feedback whole-body controller to ensure accurate and robust motion execution even under slip and external disturbances. The application of this framework includes intuitive tele-operation of the robot, efficient scripting of behaviors, and fully autonomous operation with motion and footstep planners.

uuv_simulator - Gazebo/ROS packages for underwater robotics simulation

  •    Python

The Unmanned Underwater Vehicle Simulator is a set of packages that include plugins and ROS applications that allow simulation of underwater vehicles in Gazebo. In you are willing to contribute to this package, please check the instructions in CONTRIBUTING.

OpenBot - OpenBot leverages smartphones as brains for low-cost robots

  •    Java

OpenBot leverages smartphones as brains for low-cost robots. We have designed a small electric vehicle that costs about $50 and serves as a robot body. Our software stack for Android smartphones supports advanced robotics workloads such as person following and real-time autonomous navigation. Please read the contribution guidelines. If you are not sure where to start have a look at the open issues.

chrono - C++ library for multi-physics simulation

  •    C++

Project Chrono represents a community effort aimed at producing a physics-based modelling and simulation infrastructure based on a platform-independent, open-source design. The name of this software infrastructure is Chrono. Some of its features are listed below. More information is available at the project website. The applications areas in which Chrono is most often used are vehicle dynamics, robotics, and machine design. In vehicle dynamics, Chrono has mature support for tire/terrain interaction modeling and simulation.

redtail - Perception and AI components for autonomous mobile robotics.

  •    C++

Autonomous visual navigation components for drones and ground vehicles using deep learning. Refer to wiki for more information on how to get started. This project contains deep neural networks, computer vision and control code, hardware instructions and other artifacts that allow users to build a drone or a ground vehicle which can autonomously navigate through highly unstructured environments like forest trails, sidewalks, etc. Our TrailNet DNN for visual navigation is running on NVIDIA's Jetson embedded platform. Our arXiv paper describes TrailNet and other runtime modules in detail.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.