Machine Learning Framework

  •        268

Machine Learning Framework (MLF) is a library based on .NET Framework for machine learning implementation. This library consists of collection of machine learning algorithms such as Bayesian, Neural Network, SOM, Genetic Algorithm, SVM, and etc.

http://mlf.codeplex.com/

Tags
Implementation
License
Platform

   




Related Projects

tpot - A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming


Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.TPOT will automate the most tedious part of machine learning by intelligently exploring thousands of possible pipelines to find the best one for your data.

Jubatus - Framework and Library for Distributed Online Machine Learning


Jubatus is a distributed processing framework and streaming machine learning library. Jubatus includes these functionalities: Online Machine Learning Library: Classification, Regression, Recommendation (Nearest Neighbor Search), Graph Mining, Anomaly Detection, Clustering, Feature Vector Converter (fv_converter): Data Preprocess and Feature Extraction, Framework for Distributed Online Machine Learning with Fault Tolerance.

Smile - Statistical Machine Intelligence & Learning Engine


Smile (Statistical Machine Intelligence and Learning Engine) is a fast and comprehensive machine learning, NLP, linear algebra, graph, interpolation, and visualization system in Java and Scala. With advanced data structures and algorithms, Smile delivers state-of-art performance.Smile covers every aspect of machine learning, including classification, regression, clustering, association rule mining, feature selection, manifold learning, multidimensional scaling, genetic algorithms, missing value imputation, efficient nearest neighbor search, etc.

JSAT - Java Statistical Analysis Tool, a Java library for Machine Learning


JSAT is a library for quickly getting started with Machine Learning problems. It is developed in my free time, and made available for use under the GPL 3. Part of the library is for self education, as such - all code is self contained. JSAT has no external dependencies, and is pure Java. I also aim to make the library suitably fast for small to medium size problems. As such, much of the code supports parallel execution.If you want to use the bleeding edge, but don't want to bother building yourself, I recomend you look at jitpack.io. It can build a POM repo for you for any specific commit version. Click on "Commits" in the link and then click "get it" for the commit version you want.


machine-learning-samples - Sample applications built using AWS' Amazon Machine Learning.


Each subdirectory contains sample code for using Amazon Machine Learning. Refer to the README.md file in each sub-directory for details on using each sample.This sample application shows how to use Amazon Mechanical Turk to create a labeled dataset from raw tweets, and then build a machine learning model using the Amazon Machine Learning API that predicts whether or not new tweets should be acted upon by customer service. The sample shows how to set up an automated filter using AWS Lambda that monitors tweets on an Amazon Kinesis stream and sends notifications whenever the ML Model predicts that a new tweet is actionable. Notifications go to Amazon SNS, allowing delivery to email, SMS text messages, or other software services.

machine-learning-with-ruby - Curated list: Resources for machine learning in Ruby.


Machine Learning is a field of Computational Science - often nested under AI research - with many practical applications due to the ability of resulting algorithms to systematically implement a specific solution without explicit programmer's instructions. Obviously many algorithms need a definition of features to look at or a biggish training set of data to derive the solution from. This curated list comprises awesome libraries, data sources, tutorials and presentations about Machine Learning utilizing the Ruby programming language.

H2O - Fast Scalable Machine Learning API For Smarter Applications


H2O is for data scientists and application developers who need fast, in-memory scalable machine learning for smarter applications. H2O is an open source parallel processing engine for machine learning. Unlike traditional analytics tools, H2O provides a combination of extraordinary math, a high performance parallel architecture, and unrivaled ease of use.

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET


The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

ml-agents - Unity Machine Learning Agents


Unity Machine Learning Agents (ML-Agents) is an open-source Unity plugin that enables games and simulations to serve as environments for training intelligent agents. Agents can be trained using reinforcement learning, imitation learning, neuroevolution, or other machine learning methods through a simple-to-use Python API. We also provide implementations (based on TensorFlow) of state-of-the-art algorithms to enable game developers and hobbyists to easily train intelligent agents for 2D, 3D and VR/AR games. These trained agents can be used for multiple purposes, including controlling NPC behavior (in a variety of settings such as multi-agent and adversarial), automated testing of game builds and evaluating different game design decisions pre-release. ML-Agents is mutually beneficial for both game developers and AI researchers as it provides a central platform where advances in AI can be evaluated on Unity’s rich environments and then made accessible to the wider research and game developer communities. For more information, in addition to installation and usage instructions, see our documentation home. If you have used a version of ML-Agents prior to v0.3, we strongly recommend our guide on migrating to v0.3.

gorgonia - Gorgonia is a library that helps facilitate machine learning in Go.


Gorgonia is a library that helps facilitate machine learning in Go. Write and evaluate mathematical equations involving multidimensional arrays easily. If this sounds like Theano or TensorFlow, it's because the idea is quite similar. Specifically, the library is pretty low-level, like Theano, but has higher goals like Tensorflow.The main reason to use Gorgonia is developer comfort. If you're using a Go stack extensively, now you have access to the ability to create production-ready machine learning systems in an environment that you are already familiar and comfortable with.

MMLSpark - Microsoft Machine Learning for Apache Spark


MMLSpark provides a number of deep learning and data science tools for Apache Spark, including seamless integration of Spark Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK) and OpenCV, enabling you to quickly create powerful, highly-scalable predictive and analytical models for large image and text datasets.MMLSpark requires Scala 2.11, Spark 2.1+, and either Python 2.7 or Python 3.5+. See the API documentation for Scala and for PySpark.

Java Machine Learning Library


Java Machine Learning Library is a library of machine learning algorithms and related datasets. Machine learning techniques include: clustering, classification, feature selection, regression, data pre-processing, ensemble learning, voting, ...

turicreate - Turi Create simplifies the development of custom machine learning models.


Turi Create simplifies the development of custom machine learning models. You don't have to be a machine learning expert to add recommendations, object detection, image classification, image similarity or activity classification to your app. For detailed instructions for different varieties of Linux see LINUX_INSTALL.md. For common installation issues see INSTALL_ISSUES.md.

DeepDetect - Deep Learning Server


DeepDetect is an Instant Machine Learning for your Applications. It can classify images, text and numerical data from your application or the command line by series of simple calls to the deep learning server. A simple yet powerful and generic API for use of Machine Learning.

Open Machine Learning


Open Machine Learning will be a collection of data structures and algorithms written in C# that enables machine learning research.

multiverso - Parameter server framework for distributed machine learning


Multiverso is a parameter server based framework for training machine learning models on big data with numbers of machines. It is currently a standard C++ library and provides a series of friendly programming interfaces. With such easy-to-use APIs, machine learning researchers and practitioners do not need to worry about the system routine issues such as distributed model storage and operation, inter-process and inter-thread communication, multi-threading management, and so on. Instead, they are

talon - Mailgun library to extract message quotations and signatures


Mailgun library to extract message quotations and signatures.For machine learning talon currently uses the scikit-learn library to build SVM classifiers. The core of machine learning algorithm lays in talon.signature.learning package. It defines a set of features to apply to a message (featurespace.py), how data sets are built (dataset.py), classifier’s interface (classifier.py).

photon-ml - A scalable machine learning library on Apache Spark


New: check out our hands-on tutorial.Photon Machine Learning (Photon ML) is a machine learning library based upon Apache Spark originally developed by the LinkedIn Machine Learning Algorithms team.

Sensorbee - Lightweight stream processing engine for IoT


Sensorbee is designed for low-latency processing of streaming data at the edge of the network. IoT devices frequently generate large volumes of unstructured streaming data, such as video and audio streams. Even if the data streams are structured, they may be meaningless if their temporal characteristics are not considered. Cloud-based services are generally not good at processing these kinds of data. Preprocessing data streams before they are sent to the cloud makes large scale data processing in the cloud more efficient and reduces the usage of network bandwidth.