tika-python - Tika-Python is a Python binding to the Apache Tika™ REST services allowing Tika to be called natively in the Python community

  •        520

A Python port of the Apache Tika library that makes Tika available using the Tika REST Server. This makes Apache Tika available as a Python library, installable via Setuptools, Pip and Easy Install.

https://github.com/chrismattmann/tika-python

Tags
Implementation
License
Platform

   




Related Projects

Apache Tika - A content analysis toolkit

  •    Java

The Apache Tika toolkit detects and extracts metadata and text from over a thousand different file types (such as PPT, XLS, and PDF). All of these file types can be parsed through a single interface, making Tika useful for search engine indexing, content analysis, translation, and much more.

NLP-Models-Tensorflow - Gathers machine learning and Tensorflow deep learning models for NLP problems, 1

  •    Jupyter

NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. I will attached github repositories for models that I not implemented from scratch, basically I copy, paste and fix those code for deprecated issues.

OpenNLP - Machine learning based toolkit for the processing of natural language text

  •    Java

The Apache OpenNLP library is a machine learning based toolkit for the processing of natural language text. It supports the most common NLP tasks, such as tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing, and coreference resolution. These tasks are usually required to build more advanced text processing services. OpenNLP also includes maximum entropy and perceptron based machine learning.

snips-nlu - Snips Python library to extract meaning from text

  •    Python

Snips NLU (Natural Language Understanding) is a Python library that allows to parse sentences written in natural language and extracts structured information. To find out how to use Snips NLU please refer to our documentation, it will provide you with a step-by-step guide on how to use and setup our library.

pynlpl - PyNLPl, pronounced as 'pineapple', is a Python library for Natural Language Processing

  •    Python

PyNLPl, pronounced as 'pineapple', is a Python library for Natural Language Processing. It contains various modules useful for common, and less common, NLP tasks. PyNLPl can be used for basic tasks such as the extraction of n-grams and frequency lists, and to build simple language model. There are also more complex data types and algorithms. Moreover, there are parsers for file formats common in NLP (e.g. FoLiA/Giza/Moses/ARPA/Timbl/CQL). There are also clients to interface with various NLP specific servers. PyNLPl most notably features a very extensive library for working with FoLiA XML (Format for Linguistic Annotatation). The library is a divided into several packages and modules. It works on Python 2.7, as well as Python 3.


transformers - 🤗Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX

  •    Python

🤗 Transformers provides thousands of pretrained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, text generation and more in over 100 languages. Its aim is to make cutting-edge NLP easier to use for everyone. 🤗 Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our model hub. At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.

Solr - Blazing-fast, open source enterprise search platform

  •    Java

Solr is the popular, blazing fast open source enterprise search platform from the Apache Lucene project. Its major features include powerful full-text search, hit highlighting, faceted search, dynamic clustering, database integration, and rich document (e.g., Word, PDF) handling. Solr is highly scalable, providing distributed search and index replication, and it powers the search and navigation features of many of the world's largest internet sites.

spark-nlp - Natural Language Understanding Library for Apache Spark.

  •    Jupyter

John Snow Labs Spark-NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment. This library has been uploaded to the spark-packages repository https://spark-packages.org/package/JohnSnowLabs/spark-nlp .

spaCy - 💫 Industrial-strength Natural Language Processing (NLP) with Python and Cython

  •    Python

spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. spaCy comes with pre-trained statistical models and word vectors, and currently supports tokenization for 20+ languages. It features the fastest syntactic parser in the world, convolutional neural network models for tagging, parsing and named entity recognition and easy deep learning integration. It's commercial open-source software, released under the MIT license. 💫 Version 2.0 out now! Check out the new features here.

Tikka - A content analysis toolkit

  •    Java

Apache Tika is a toolkit for detecting and extracting metadata and structured text content from various documents using existing parser libraries.

yomu - Read text and metadata from files and documents (.doc, .docx, .pages, .odt, .rtf, .pdf)

  •    Ruby

Yomu is a library for extracting text and metadata from files and documents using the Apache Tika content analysis toolkit. For the complete list of supported formats, please visit the Apache Tika Supported Document Formats page.

thinc - 🔮 spaCy's Machine Learning library for NLP in Python

  •    Assembly

Thinc is the machine learning library powering spaCy. It features a battle-tested linear model designed for large sparse learning problems, and a flexible neural network model under development for spaCy v2.0. Thinc is a practical toolkit for implementing models that follow the "Embed, encode, attend, predict" architecture. It's designed to be easy to install, efficient for CPU usage and optimised for NLP and deep learning with text – in particular, hierarchically structured input and variable-length sequences.

TextBlob - Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more

  •    Python

TextBlob is a Python (2 and 3) library for processing textual data. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more. TextBlob stands on the giant shoulders of NLTK and pattern, and plays nicely with both.

stanfordnlp - Official Stanford NLP Python Library for Many Human Languages

  •    Python

The Stanford NLP Group's official Python NLP library. It contains packages for running our latest fully neural pipeline from the CoNLL 2018 Shared Task and for accessing the Java Stanford CoreNLP server. For detailed information please visit our official website. The PyTorch implementation of the neural pipeline in this repository is due to Peng Qi and Yuhao Zhang, with help from Tim Dozat and Jason Bolton.

PyTorch-NLP - Supporting Rapid Prototyping with a Toolkit (incl. Datasets and Neural Network Layers)

  •    Python

PyTorch-NLP, or torchnlp for short, is a library of neural network layers, text processing modules and datasets designed to accelerate Natural Language Processing (NLP) research. Join our community, add datasets and neural network layers! Chat with us on Gitter and join the Google Group, we're eager to collaborate with you.

mmocr - OpenMMLab Text Detection, Recognition and Understanding Toolbox

  •    Python

MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the corresponding downstream tasks including key information extraction. It is part of the OpenMMLab project. The main branch works with PyTorch 1.5+.

flair - A very simple framework for state-of-the-art NLP

  •    Python

A very simple framework for state-of-the-art NLP. Developed by Zalando Research. A powerful syntactic-semantic tagger / classifier. Flair allows you to apply our state-of-the-art models for named entity recognition (NER), part-of-speech tagging (PoS), frame sense disambiguation, chunking and classification to your text.

neuralmonkey - An open-source tool for sequence learning in NLP built on TensorFlow.

  •    Python

The Neural Monkey package provides a higher level abstraction for sequential neural network models, most prominently in Natural Language Processing (NLP). It is built on TensorFlow. It can be used for fast prototyping of sequential models in NLP which can be used e.g. for neural machine translation or sentence classification. The higher-level API brings together a collection of standard building blocks (RNN encoder and decoder, multi-layer perceptron) and a simple way of adding new building blocks implemented directly in TensorFlow.

nlp-with-ruby - Practical Natural Language Processing done in Ruby.

  •    Ruby

This curated list comprises awesome resources, libraries, information sources about computational processing of texts in human languages with the Ruby programming language. That field is often referred to as NLP, Computational Linguistics, HLT (Human Language Technology) and can be brought in conjunction with Artificial Intelligence, Machine Learning, Information Retrieval, Text Mining, Knowledge Extraction and other related disciplines. This list comes from our day to day work on Language Models and NLP Tools. Read why this list is awesome. Our FAQ describes the important decisions and useful answers you may be interested in.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.