simple-faster-rcnn-pytorch - A simplified implemention of Faster R-CNN that replicate performance from origin paper

  •        407

VGG16 train on trainval and test on test split. Note: the training shows great randomness, you may need a bit of luck and more epoches of training to reach the highest mAP. However, it should be easy to surpass the lower bound.



Related Projects

pytorch-faster-rcnn - 0.4 updated. Support cpu test and demo.

  •    Jupyter

The main differences between new and old master branch are in this two commits: 9d4c24e, c899ce7 The change is related to this issue; master now matches all the details in tf-faster-rcnn so that we can now convert pretrained tf model to pytorch model. A pytorch implementation of faster RCNN detection framework based on Xinlei Chen's tf-faster-rcnn. Xinlei Chen's repository is based on the python Caffe implementation of faster RCNN available here.

tf-faster-rcnn - Tensorflow Faster RCNN for Object Detection

  •    Python

For a good and more up-to-date implementation for faster/mask RCNN with multi-gpu support, please see the example in TensorPack here. A Tensorflow implementation of faster RCNN detection framework by Xinlei Chen ( This repository is based on the python Caffe implementation of faster RCNN available here.

mmdetection - OpenMMLab Detection Toolbox and Benchmark

  •    Python

News: We released the technical report on ArXiv. MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenPCDet - OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

  •    Python

OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release of [PointRCNN], [Part-A^2 net] and [PV-RCNN].

faster-rcnn.pytorch - A faster pytorch implementation of faster r-cnn

  •    Python

It supports multi-image batch training. We revise all the layers, including dataloader, rpn, roi-pooling, etc., to support multiple images in each minibatch. It supports multiple GPUs training. We use a multiple GPU wrapper (nn.DataParallel here) to make it flexible to use one or more GPUs, as a merit of the above two features.

cascade-rcnn - Caffe implementation of multiple popular object detection frameworks

  •    C++

This repository is written by Zhaowei Cai at UC San Diego. This repository implements mulitple popular object detection algorithms, including Faster R-CNN, R-FCN, FPN, and our recently proposed Cascade R-CNN, on the MS-COCO and PASCAL VOC datasets. Multiple choices are available for backbone network, including AlexNet, VGG-Net and ResNet. It is written in C++ and powered by Caffe deep learning toolbox.

chainer-faster-rcnn - Object Detection with Faster R-CNN in Chainer

  •    Python

This is an experimental implementation of Faster R-CNN in Chainer based on Ross Girshick's work: py-faster-rcnn codes. Using anaconda is strongly recommended.

Mask-RCNN - A PyTorch implementation of the architecture of Mask RCNN, serves as an introduction to working with PyTorch

  •    Python

A PyTorch implementation of the architecture of Mask RCNN, serves as an introduction to working with PyTorch

adversarial-frcnn - A-Fast-RCNN (CVPR 2017)

  •    Python

This is a Caffe based version of A-Fast-RCNN (arxiv_link). Although we originally implement it on torch, this Caffe re-implementation is much simpler, faster and easier to use. We release the code for training A-Fast-RCNN with Adversarial Spatial Dropout Network.

soft-nms - Object Detection

  •    Jupyter

This repository includes the code for Soft-NMS. Soft-NMS is integrated with two object detectors, R-FCN and Faster-RCNN. The Soft-NMS paper can be found here. Soft-NMS is complementary to multi-scale testing and iterative bounding box regression. Check MSRA slides from the COCO 2017 challenge.

pytorch-segmentation-detection - Image Segmentation and Object Detection in Pytorch

  •    Jupyter

So far, the library contains an implementation of FCN-32s (Long et al.), Resnet-18-8s, Resnet-34-8s (Chen et al.) image segmentation models in Pytorch and Pytorch/Vision library with training routine, reported accuracy, trained models for PASCAL VOC 2012 dataset. To train these models on your data, you will have to write a dataloader for your dataset. Models for Object Detection will be released soon.

RON - RON: Reverse Connection with Objectness Prior Networks for Object Detection, CVPR 2017

  •    Python

RON is a state-of-the-art visual object detection system for efficient object detection framework. The code is modified from py-faster-rcnn. You can use the code to train/evaluate a network for object detection task. For more details, please refer to our CVPR paper. Note: SSD300 and SSD500 are the original SSD model from SSD.

AlphaPose - Multi-Person Pose Estimation System

  •    Jupyter

Alpha Pose is an accurate multi-person pose estimator, which is the first open-source system that achieves 70+ mAP (72.3 mAP) on COCO dataset and 80+ mAP (82.1 mAP) on MPII dataset. To match poses that correspond to the same person across frames, we also provide an efficient online pose tracker called Pose Flow. It is the first open-source online pose tracker that achieves both 60+ mAP (66.5 mAP) and 50+ MOTA (58.3 MOTA) on PoseTrack Challenge dataset. Note: Please read PoseFlow/ for details.

luminoth - Deep Learning toolkit for Computer Vision

  •    Python

Luminoth is an open source toolkit for computer vision. Currently, we support object detection, but we are aiming for much more. It is built in Python, using TensorFlow and Sonnet. Read the full documentation here.

PyTorch-YOLOv3 - Minimal PyTorch implementation of YOLOv3

  •    Python

Minimal implementation of YOLOv3 in PyTorch. Abstract We present some updates to YOLO! We made a bunch of little design changes to make it better. We also trained this new network that’s pretty swell. It’s a little bigger than last time but more accurate. It’s still fast though, don’t worry. At 320 × 320 YOLOv3 runs in 22 ms at 28.2 mAP, as accurate as SSD but three times faster. When we look at the old .5 IOU mAP detection metric YOLOv3 is quite good. It achieves 57.9 AP50 in 51 ms on a Titan X, compared to 57.5 AP50 in 198 ms by RetinaNet, similar performance but 3.8× faster. As always, all the code is online at

Android-Object-Detection - :coffee: Fast-RCNN and Scene Recognition using Caffe

  •    Java

Get the Caffe model and push it to Phone SDCard. For object detection, network(*.prototxt) should use ROILayer, you can refer to Fast-RCNN. For scene recognition(object recognition), it can use any caffe network and weight with memory input layer. Scene recognition - Convolutional neural networks trained on Places Input a picture of a place or scene and predicts it.

tensornets - High level network definitions with pre-trained weights in TensorFlow

  •    Python

High level network definitions with pre-trained weights in TensorFlow (tested with >= 1.1.0). You can install TensorNets from PyPI (pip install tensornets) or directly from GitHub (pip install git+

pytorch-yolo-v3 - A PyTorch implementation of the YOLO v3 object detection algorithm

  •    Python

[UPDATE] : This repo serves as a driver code for my research. I just graduated college, and am very busy looking for research internship / fellowship roles before eventually applying for a masters. I won't have the time to look into issues for the time being. Thank you. This repository contains code for a object detector based on YOLOv3: An Incremental Improvement, implementedin PyTorch. The code is based on the official code of YOLO v3, as well as a PyTorch port of the original code, by marvis. One of the goals of this code is to improve upon the original port by removing redundant parts of the code (The official code is basically a fully blown deep learning library, and includes stuff like sequence models, which are not used in YOLO). I've also tried to keep the code minimal, and document it as well as I can.


  •    Python

Example output of e2e_mask_rcnn-R-101-FPN_2x using Detectron pretrained weight. Corresponding example output from Detectron.

We have large collection of open source products. Follow the tags from Tag Cloud >>

Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.