pointnet-autoencoder - Autoencoder for Point Clouds

  •        50

This repository is under the MIT license. See the LICENSE file for detail. We need TensorFlow (version>=1.4).

https://github.com/charlesq34/pointnet-autoencoder

Tags
Implementation
License
Platform

   




Related Projects

pointnet2 - PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

  •    Python

Created by Charles R. Qi, Li (Eric) Yi, Hao Su, Leonidas J. Guibas from Stanford University. This work is based on our NIPS'17 paper. You can find arXiv version of the paper here or check project webpage for a quick overview. PointNet++ is a follow-up project that builds on and extends PointNet. It is version 2.0 of the PointNet architecture.

frustum-pointnets - Frustum PointNets for 3D Object Detection from RGB-D Data

  •    Python

Created by Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su and Leonidas J. Guibas from Stanford University and Nuro Inc. This repository is code release for our CVPR 2018 paper (arXiv report here). In this work, we study 3D object detection from RGB-D data. We propose a novel detection pipeline that combines both mature 2D object detectors and the state-of-the-art 3D deep learning techniques. In our pipeline, we firstly build object proposals with a 2D detector running on RGB images, where each 2D bounding box defines a 3D frustum region. Then based on 3D point clouds in those frustum regions, we achieve 3D instance segmentation and amodal 3D bounding box estimation, using PointNet/PointNet++ networks (see references at bottom).

pointnet - PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

  •    Python

Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Stanford University. This work is based on our arXiv tech report, which is going to appear in CVPR 2017. We proposed a novel deep net architecture for point clouds (as unordered point sets). You can also check our project webpage for a deeper introduction.


Autoencoders - Torch implementations of various types of autoencoders

  •    Lua

Different models can be chosen using th main.lua -model <modelName>. The denoising criterion can be used to replace the standard (autoencoder) reconstruction criterion by using the denoising flag. For example, a denoising AAE (DAAE) [10] can be set up using th main.lua -model AAE -denoising. The corruption process is additive Gaussian noise *~ N(0, 0.5)*.

Pyod - A Python Toolkit for Scalable Outlier Detection (Anomaly Detection)

  •    Python

Important Notes: PyOD contains some neural network based models, e.g., AutoEncoders, which are implemented in keras. However, PyOD would NOT install keras and tensorflow automatically. This would reduce the risk of damaging your local installations. You are responsible for installing keras and tensorflow if you want to use neural net based models. An instruction is provided here. Anomaly detection resources, e.g., courses, books, papers and videos.

NiftyNet - An open-source convolutional neural networks platform for research in medical image analysis and image-guided therapy

  •    Python

NiftyNet is a consortium of research organisations (BMEIS -- School of Biomedical Engineering and Imaging Sciences, King's College London; WEISS -- Wellcome EPSRC Centre for Interventional and Surgical Sciences, UCL; CMIC -- Centre for Medical Image Computing, UCL; HIG -- High-dimensional Imaging Group, UCL), where BMEIS acts as the consortium lead. NiftyNet is not intended for clinical use.

zhihu - This repo contains the source code in my personal column (https://zhuanlan

  •    Jupyter

This repo contains the source code in my personal column (https://zhuanlan.zhihu.com/zhaoyeyu), implemented using Python 3.6. Including Natural Language Processing and Computer Vision projects, such as text generation, machine translation, deep convolution GAN and other actual combat code.

keras-molecules - Autoencoder network for learning a continuous representation of molecular structures

  •    Python

We report a method to convert discrete representations of molecules to and from a multidimensional continuous representation. This generative model allows efficient search and optimization through open-ended spaces of chemical compounds. We train deep neural networks on hundreds of thousands of existing chemical structures to construct two coupled functions: an encoder and a decoder. The encoder converts the discrete representation of a molecule into a real-valued continuous vector, and the decoder converts these continuous vectors back to the discrete representation from this latent space.

Tensorflow-Tutorial - Tensorflow tutorial from basic to hard

  •    Python

In these tutorials, we will build our first Neural Network and try to build some advanced Neural Network architectures developed recent years. All methods mentioned below have their video and text tutorial in Chinese. Visit 莫烦 Python for more.

TensorFlow-Tutorials - 텐서플로우를 기초부터 응용까지 단계별로 연습할 수 있는 소스 코드를 제공합니다

  •    Python

텐서플로우를 기초부터 응용까지 단계별로 연습할 수 있는 소스 코드를 제공합니다. 텐서플로우 공식 사이트에서 제공하는 안내서의 대부분의 내용을 다루고 있으며, 공식 사이트에서 제공하는 소스 코드보다는 훨씬 간략하게 작성하였으므로 쉽게 개념을 익힐 수 있을 것 입니다. 또한, 모든 주석은 한글로(!) 되어 있습니다.

3dmatch-toolbox - 3DMatch - a 3D ConvNet-based local geometric descriptor for aligning 3D meshes and point clouds

  •    C++

Matching local geometric features on real-world depth images is a challenging task due to the noisy, low-resolution, and incomplete nature of 3D scan data. These difficulties limit the performance of current state-of-art methods, which are typically based on histograms over geometric properties. In this paper, we present 3DMatch, a data-driven model that learns a local volumetric patch descriptor for establishing correspondences between partial 3D data. To amass training data for our model, we propose an unsupervised feature learning method that leverages the millions of correspondence labels found in existing RGB-D reconstructions. Experiments show that our descriptor is not only able to match local geometry in new scenes for reconstruction, but also generalize to different tasks and spatial scales (e.g. instance-level object model alignment for the Amazon Picking Challenge, and mesh surface correspondence). Results show that 3DMatch consistently outperforms other state-of-the-art approaches by a significant margin. This code is released under the Simplified BSD License (refer to the LICENSE file for details).

TensorFlow-Book - Accompanying source code for Machine Learning with TensorFlow

  •    Jupyter

This is the official code repository for Machine Learning with TensorFlow. Get started with machine learning using TensorFlow, Google's latest and greatest machine learning library.

pytorch-made - MADE (Masked Autoencoder Density Estimation) implementation in PyTorch

  •    Python

This code is an implementation of "Masked AutoEncoder for Density Estimation" by Germain et al., 2015. The core idea is that you can turn an auto-encoder into an autoregressive density model just by appropriately masking the connections in the MLP, ordering the input dimensions in some way and making sure that all outputs only depend on inputs earlier in the list. Like other autoregressive models (char-rnn, pixel cnns, etc), evaluating the likelihood is very cheap (a single forward pass), but sampling is linear in the number of dimensions. The authors of the paper also published code here, but it's a bit wordy, sprawling and in Theano. Hence my own shot at it with only ~150 lines of code and PyTorch <3.

autoencoding_beyond_pixels - Generative image model with learned similarity measures

  •    Python

Implementation of the method described in our Arxiv paper. We present an autoencoder that leverages learned representations to better measure similarities in data space. By combining a variational autoencoder with a generative adversarial network we can use learned feature representations in the GAN discriminator as basis for the VAE reconstruction objective. Thereby, we replace element-wise errors with feature-wise errors to better capture the data distribution while offering invariance towards e.g. translation. We apply our method to images of faces and show that it outperforms VAEs with element-wise similarity measures in terms of visual fidelity. Moreover, we show that the method learns an embedding in which high-level abstract visual features (e.g. wearing glasses) can be modified using simple arithmetic.

cppn-gan-vae-tensorflow - Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images

  •    Python

Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images. Run python train.py from the command line to train from scratch and experiment with different settings.

PyTorch-Tutorial - Build your neural network easy and fast

  •    Jupyter

In these tutorials for pyTorch, we will build our first Neural Network and try to build some advanced Neural Network architectures developed recent years. Thanks for liufuyang's notebook files which is a great contribution to this tutorial.

Deep-Learning-for-Medical-Applications - Deep Learning Papers on Medical Image Analysis

  •    TeX

To the best of our knowledge, this is the first list of deep learning papers on medical applications. There are couple of lists for deep learning papers in general, or computer vision, for example Awesome Deep Learning Papers. In this list, I try to classify the papers based on their deep learning techniques and learning methodology. I believe this list could be a good starting point for DL researchers on Medical Applications.

pytorch_geometric - Geometric Deep Learning Extension Library for PyTorch

  •    Python

PyTorch Geometric is a geometric deep learning extension library for PyTorch. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.