Cascalog - Data processing on Hadoop

  •        6392

Cascalog is a fully-featured data processing and querying library for Clojure or Java. The main use cases for Cascalog are processing "Big Data" on top of Hadoop or doing analysis on your local computer. Cascalog is a replacement for tools like Pig, Hive, and Cascading and operates at a significantly higher level of abstraction than those tools.

http://cascalog.org/
https://github.com/nathanmarz/cascalog

Tags
Implementation
License
Platform

   




Related Projects

incubator-doris - Palo,an MPP data warehouse

  •    C++

Palo is an MPP-based interactive SQL data warehousing for reporting and analysis. Palo mainly integrates the technology of Google Mesa and Apache Impala. Unlike other popular SQL-on-Hadoop systems, Palo is designed to be a simple and single tightly coupled system, not depending on other systems. Palo not only provides high concurrent low latency point query performance, but also provides high throughput queries of ad-hoc analysis. Palo not only provides batch data loading, but also provides near real-time mini-batch data loading. Palo also provides high availability, reliability, fault tolerance, and scalability. The simplicity (of developing, deploying and using) and meeting many data serving requirements in single system are the main features of Palo. In Baidu, the largest Chinese search engine, we run a two-tiered data warehousing system for data processing, reporting and analysis. Similar to lambda architecture, the whole data warehouse comprises data processing and data serving. Data processing does the heavy lifting of big data: cleaning data, merging and transforming it, analyzing it and preparing it for use by end user queries; data serving is designed to serve queries against that data for different use cases. Currently data processing includes batch data processing and stream data processing technology, like Hadoop, Spark and Storm; Palo is a SQL data warehouse for serving online and interactive data reporting and analysis querying.

Apache Tajo - A big data warehouse system on Hadoop

  •    Java

Apache Tajo is a robust big data relational and distributed data warehouse system for Apache Hadoop. Tajo is designed for low-latency and scalable ad-hoc queries, online aggregation, and ETL (extract-transform-load process) on large-data sets stored on HDFS (Hadoop Distributed File System) and other data sources.

gis-tools-for-hadoop - The GIS Tools for Hadoop are a collection of GIS tools for spatial analysis of big data

  •    

The GIS Tools for Hadoop are a collection of GIS tools that leverage the Spatial Framework for Hadoop for spatial analysis of big data. The tools make use of the Geoprocessing Tools for Hadoop toolbox, to provide access to the Hadoop system from the ArcGIS Geoprocessing environment. Start out by navigating to samples and following the instructions provided with each sample.There are also tutorials for using the GP tools and aggregation methods.

Apache Hive - The Apache Hive (TM) data warehouse software facilitates querying and managing large d

  •    Java

The Apache Hive (TM) data warehouse software facilitates querying and managing large datasets residing in distributed storage.

HPCC System - Hadoop alternative

  •    C++

HPCC is a proven and battle-tested platform for manipulating, transforming, querying and data warehousing Big Data. It supports two type of configuration. Thor is responsible for consuming vast amounts of data, transforming, linking and indexing that data. It functions as a distributed file system with parallel processing power spread across the nodes. Roxie, the Data Delivery Engine, provides separate high-performance online query processing and data warehouse capabilities.


Kylin - Extreme OLAP Engine for Big Data

  •    Java

Apache Kylin is an open source Distributed Analytics Engine designed to provide SQL interface and multi-dimensional analysis (OLAP) on Hadoop supporting extremely large datasets, original contributed from eBay Inc. It is designed to reduce query latency on Hadoop for 10+ billions of rows of data. It offers ANSI SQL on Hadoop and supports most ANSI SQL query functions.

Dremio - The missing link in modern data

  •    Java

Dremio is a self-service data platform that empowers users to discover, curate, accelerate, and share any data at any time, regardless of location, volume, or structure. Modern data is managed by a wide range of technologies, including relational databases, NoSQL datastores, file systems, Hadoop, and others. Many of the newer datastores are often more agile and provide improved scalability, but at a cost to speed and ease of access via traditional SQL-based analysis tools. Additionally, raw data found in these stores is often too complex or inconsistent for analysis to use with business intelligence tools.

Apache Trafodion - Webscale SQL-on-Hadoop solution enabling transactional or operational workloads on Apache Hadoop.

  •    C++

Apache Trafodion is a webscale SQL-on-Hadoop solution enabling transactional or operational workloads on Apache Hadoop. Trafodion builds on the scalability, elasticity, and flexibility of Hadoop. Trafodion extends Hadoop to provide guaranteed transactional integrity, enabling new kinds of big data applications to run on Hadoop.

Apache Tez - A Framework for YARN-based, Data Processing Applications In Hadoop

  •    Java

Apache Tez is an extensible framework for building high performance batch and interactive data processing applications, coordinated by YARN in Apache Hadoop. Tez improves the MapReduce paradigm by dramatically improving its speed, while maintaining MapReduce’s ability to scale to petabytes of data. Important Hadoop ecosystem projects like Apache Hive and Apache Pig use Apache Tez, as do a growing number of third party data access applications developed for the broader Hadoop ecosystem.

Shark - Hive on Spark

  •    Scala

Shark is an open source distributed SQL query engine for Hadoop data. It brings state-of-the-art performance and advanced analytics to Hive users. It runs Hive queries up to 100x faster in memory, or 10x on disk. it is a large-scale data warehouse system for Spark designed to be compatible with Apache Hive.

AsterixDB - Big Data Management System (BDMS)

  •    Java

AsterixDB is a BDMS (Big Data Management System) with a rich feature set that sets it apart from other Big Data platforms. Its feature set makes it well-suited to modern needs such as web data warehousing and social data storage and analysis. It is a highly scalable data management system that can store, index, and manage semi-structured data, but it also supports a full-power query language with the expressiveness of SQL (and more).

ANTLR - ANother Tool for Language Recognition

  •    Java

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files. It's widely used to build languages, tools, and frameworks. From a grammar, ANTLR generates a parser that can build and walk parse trees. Twitter search uses ANTLR for query parsing, with over 2 billion queries a day.

Luigi - Python module that helps you build complex pipelines of batch jobs

  •    Python

The purpose of Luigi is to address all the plumbing typically associated with long-running batch processes. You want to chain many tasks, automate them, and failures will happen. These tasks can be anything, but are typically long running things like Hadoop jobs, dumping data to/from databases, running machine learning algorithms, or anything else.

Hue - The open source Apache Hadoop UI

  •    Java

Hue is a Web application for interacting with Apache Hadoop. It supports a FileBrowser for accessing HDFS, JobBrowser for accessing MapReduce jobs (MR1/MR2-YARN), Job Designer for creating MapReduce/Streaming/Java jobs, HBase Browser for exploring and modifying HBase tables and data, Oozie App for submitting and scheduling workflows and bundles, A Pig/HBase/Sqoop2 shell, Beeswax application for executing Hive queries, Search app for querying Solr and Solr Cloud.

Sqoop - Transfers data between Hadoop and Datastores

  •    Java

Apache Sqoop is a tool designed for efficiently transferring bulk data between Apache Hadoop and structured datastores such as relational databases. You can use Sqoop to import data from external structured datastores into Hadoop Distributed File System or related systems like Hive and HBase. Conversely, Sqoop can be used to extract data from Hadoop and export it to external structured datastores such as relational databases and enterprise data warehouses.

Apache Gora - Provides persistence to column stores, key value stores, document stores and RDBMS

  •    Java

The Apache Gora open source framework provides an in-memory data model and persistence for big data. Gora supports persisting to column stores, key value stores, document stores and RDBMSs, and analyzing the data with extensive Apache Hadoop MapReduce support.

GoldenOrb - Scalable Graph Analysis

  •    Java

GoldenOrb is a cloud-based project for massive-scale graph analysis, built upon Apache Hadoop and modeled after Google's Pregel architecture. It provides solutions to complex data problems, remove limits to innovation and contribute to the emerging ecosystem that spans all aspects of big data analysis. It enables users to run analytics on entire data sets instead of samples.





We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.