javacv - Java interface to OpenCV, FFmpeg, and more

  •        449

JavaCV uses wrappers from the JavaCPP Presets of commonly used libraries by researchers in the field of computer vision (OpenCV, FFmpeg, libdc1394, PGR FlyCapture, OpenKinect, librealsense, CL PS3 Eye Driver, videoInput, ARToolKitPlus, and flandmark), and provides utility classes to make their functionality easier to use on the Java platform, including Android.

https://github.com/bytedeco/javacv
http://bytedeco.org/javacv/

Tags
Implementation
License
Platform

   




Related Projects

OpenCV - Open Source Computer Vision

  •    C++

OpenCV (Open Source Computer Vision) is a library of programming functions for real time computer vision. The library has more than 500 optimized algorithms. It is used to interactive art, to mine inspection, stitching maps on the web on through advanced robotics.

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

opencv - Open Source Computer Vision Library

  •    C++

Please read the contribution guidelines before starting work on a pull request.

sod - An Embedded Computer Vision & Machine Learning Library (CPU Optimized & IoT Capable)

  •    C

SOD is an embedded, modern cross-platform computer vision and machine learning software library that expose a set of APIs for deep-learning, advanced media analysis & processing including real-time, multi-class object detection and model training on embedded systems with limited computational resource and IoT devices. SOD was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in open source as well commercial products.

opencv-processing - OpenCV for Processing

  •    Java

A Processing library for the OpenCV computer vision library. OpenCV for Processing is based on OpenCV's official Java bindings. It attempts to provide convenient wrappers for common OpenCV functions that are friendly to beginners and feel familiar to the Processing environment.


CoreAR - AR(Augmented reality) framework for iOS, based on a visual code like ARToolKit

  •    C

CoreAR.framework is open source AR framework. You can make an AR application using visual code like ARToolKit using this framework. CoreAR.framework does not depend on the other computer vision library like OpenCV. Considered portability, this framework is written only C or C++. The pixel array of an image is passed to CoreAR.framework and then visual code's identification number, rotation and translation matrix are obtained from the image including a visual code. Image processing speed of this framework is about 15 fps on iPhone4. Take notice that CoreAR.framework depends on Quartz Help Library and Real time image processing framework for iOS. You have to download these libraries and put on them at the path where CoreAR.framework has been installed.

OpenCV / Emgu services for Robotics Developer Studio

  •    

This project provides encapsulation of standard OpenCV routines to allow them to be used as services in Microsoft Robotics Developer Studio. The services utilize the EMGU C# wrapper for the OpenCV libraries. The EMGU version is wrapped to provide standard services in RDS

QVision: Computer Vision Library for Qt

  •    C++

Computer vision and image processing library for Qt.

CloudCV - Large-Scale Distributed Computer Vision As A Cloud Service

  •    NodeJS

An example of using OpenCV library in server environment using Node.js. Here you will see that it's really simple to perform CPU-intense image processing routines in the cloud. A Node.js server handle client requests and calls C++ back-end.

OpenCV-iOS - OpenCV (Open Source Computer Vision) is a library of programming functions for real time computer vision

  •    Makefile

OpenCV (Open Source Computer Vision) is a library of programming functions for real time computer vision. This project is a port of the OpenCV library for Apple iOS. It includes two XCode projects: one for iPhone, the other one for iPad. OpenCV is released under the BSD License, it is free for both academic and commercial use.

VideoMan Library

  •    C++

Library for capturing video from cameras, 3d sensors, frame-grabbers, video files and image sequences. It can also display multiple images using OpenGL with different layouts. Easy integration with OpenCV, CUDA... Perfect for computer vision. Keywords: video capture, computer vision, machine vision, opencv, opengl, cameras, video input devices, firewire, usb, gige

LiBLaB

  •    CSharp

LibLab is a C# Library, Networking, Camera, Image Processing, Audio Processing, Video Processing and Computer Vision

visionworkbench - The NASA Vision Workbench is a general purpose image processing and computer vision library developed by the Autonomous Systems and Robotics (ASR) Area in the Intelligent Systems Division at the NASA Ames Research Center

  •    C++

The NASA Vision Workbench is a general purpose image processing and computer vision library developed by the Autonomous Systems and Robotics (ASR) Area in the Intelligent Systems Division at the NASA Ames Research Center.

PyCNN - Image Processing with Cellular Neural Networks in Python

  •    Python

Cellular Neural Networks (CNN) [wikipedia] [paper] are a parallel computing paradigm that was first proposed in 1988. Cellular neural networks are similar to neural networks, with the difference that communication is allowed only between neighboring units. Image Processing is one of its applications. CNN processors were designed to perform image processing; specifically, the original application of CNN processors was to perform real-time ultra-high frame-rate (>10,000 frame/s) processing unachievable by digital processors. This python library is the implementation of CNN for the application of Image Processing.

opencv4nodejs - Asynchronous OpenCV 3

  •    C++

By its nature, JavaScript lacks the performance to implement Computer Vision tasks efficiently. Therefore this package brings the performance of the native OpenCV library to your Node.js application. This project targets OpenCV 3 and provides an asynchronous as well as an synchronous API. The ultimate goal of this project is to provide a comprehensive collection of Node.js bindings to the API of OpenCV and the OpenCV-contrib modules. An overview of available bindings can be found in the API Documentation. Furthermore, contribution is highly appreciated. If you want to get involved you can have a look at the contribution guide.

cvat - Computer Vision Annotation Tool (CVAT) is a web-based tool which helps to annotate video and images for Computer Vision algorithms

  •    Javascript

CVAT is completely re-designed and re-implemented version of Video Annotation Tool from Irvine, California tool. It is free, online, interactive video and image annotation tool for computer vision. It is being used by our team to annotate million of objects with different properties. Many UI and UX decisions are based on feedbacks from professional data annotation team. Code released under the MIT License.

pyflow - Fast, accurate and easy to run dense optical flow with python wrapper

  •    C++

Python wrapper for Ce Liu's C++ implementation of Coarse2Fine Optical Flow. This is super fast and accurate optical flow method based on Coarse2Fine warping method from Thomas Brox. This python wrapper has minimal dependencies, and it also eliminates the need for C++ OpenCV library. For real time performance, one can additionally resize the images to a smaller size. This wrapper code was developed as part of our CVPR 2017 paper on Unsupervised Learning using unlabeled videos. Github repository for our CVPR 17 paper is here.

Computer-Vision-Basics-with-Python-Keras-and-OpenCV - Full tutorial of computer vision and machine learning basics with OpenCV and Keras in Python

  •    Jupyter

This was created as part of an educational for the Western Founders Network computer vision and machine learning educational session. Note: Please check the issues on this repo if you're having problems with the notebook.

PixelAnnotationTool - Annotate quickly images.

  •    C++

Software that allows you to manually and quickly annotate images in directories. The method is pseudo manual because it uses the algorithm watershed marked of OpenCV. The general idea is to manually provide the marker with brushes and then to launch the algorithm. If at first pass the segmentation needs to be corrected, the user can refine the markers by drawing new ones on the erroneous areas (as shown on video below). Donating is very simple - and secure. Please click here to make a donation.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.