pybrisque - A python implementation of BRISQUE Image Quality Assessment

  •        282

An implementation of BRISQUE (Blind/Referenceless Image Spatial Quality Evaluator) in Python from the paper: "No-Reference Image Quality Assessment in the Spatial Domain". This implementation is heavily adopted from the original Matlab implementation in here. There is one catch though, the bicubic interpolation when resizing image in Matlab and OpenCV is a bit different as explained in here. For now, it uses nearest interpolation which gives the most similar output with the original implementation.

https://github.com/bukalapak/pybrisque

Tags
Implementation
License
Platform

   




Related Projects

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

sod - An Embedded Computer Vision & Machine Learning Library (CPU Optimized & IoT Capable)

  •    C

SOD is an embedded, modern cross-platform computer vision and machine learning software library that expose a set of APIs for deep-learning, advanced media analysis & processing including real-time, multi-class object detection and model training on embedded systems with limited computational resource and IoT devices. SOD was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in open source as well commercial products.

OpenCV - Open Source Computer Vision

  •    C++

OpenCV (Open Source Computer Vision) is a library of programming functions for real time computer vision. The library has more than 500 optimized algorithms. It is used to interactive art, to mine inspection, stitching maps on the web on through advanced robotics.

PyCNN - Image Processing with Cellular Neural Networks in Python

  •    Python

Cellular Neural Networks (CNN) [wikipedia] [paper] are a parallel computing paradigm that was first proposed in 1988. Cellular neural networks are similar to neural networks, with the difference that communication is allowed only between neighboring units. Image Processing is one of its applications. CNN processors were designed to perform image processing; specifically, the original application of CNN processors was to perform real-time ultra-high frame-rate (>10,000 frame/s) processing unachievable by digital processors. This python library is the implementation of CNN for the application of Image Processing.

LiBLaB

  •    CSharp

LibLab is a C# Library, Networking, Camera, Image Processing, Audio Processing, Video Processing and Computer Vision


visionworkbench - The NASA Vision Workbench is a general purpose image processing and computer vision library developed by the Autonomous Systems and Robotics (ASR) Area in the Intelligent Systems Division at the NASA Ames Research Center

  •    C++

The NASA Vision Workbench is a general purpose image processing and computer vision library developed by the Autonomous Systems and Robotics (ASR) Area in the Intelligent Systems Division at the NASA Ames Research Center.

neural-image-assessment - Implementation of NIMA: Neural Image Assessment in Keras

  •    Python

Implementation of NIMA: Neural Image Assessment in Keras + Tensorflow with weights for MobileNet model trained on AVA dataset. NIMA assigns a Mean + Standard Deviation score to images, and can be used as a tool to automatically inspect quality of images or as a loss function to further improve the quality of generated images.

cvat - Computer Vision Annotation Tool (CVAT) is a web-based tool which helps to annotate video and images for Computer Vision algorithms

  •    Javascript

CVAT is completely re-designed and re-implemented version of Video Annotation Tool from Irvine, California tool. It is free, online, interactive video and image annotation tool for computer vision. It is being used by our team to annotate million of objects with different properties. Many UI and UX decisions are based on feedbacks from professional data annotation team. Code released under the MIT License.

ImageAI - A python library built to empower developers to build applications and systems with self-contained Computer Vision capabilities

  •    Python

A python library built to empower developers to build applications and systems with self-contained Deep Learning and Computer Vision capabilities using simple and few lines of code. Built with simplicity in mind, ImageAI supports a list of state-of-the-art Machine Learning algorithms for image prediction, custom image prediction, object detection, video detection, video object tracking and image predictions trainings. ImageAI currently supports image prediction and training using 4 different Machine Learning algorithms trained on the ImageNet-1000 dataset. ImageAI also supports object detection, video detection and object tracking using RetinaNet, YOLOv3 and TinyYOLOv3 trained on COCO dataset. Eventually, ImageAI will provide support for a wider and more specialized aspects of Computer Vision including and not limited to image recognition in special environments and special fields.

CoreAR - AR(Augmented reality) framework for iOS, based on a visual code like ARToolKit

  •    C

CoreAR.framework is open source AR framework. You can make an AR application using visual code like ARToolKit using this framework. CoreAR.framework does not depend on the other computer vision library like OpenCV. Considered portability, this framework is written only C or C++. The pixel array of an image is passed to CoreAR.framework and then visual code's identification number, rotation and translation matrix are obtained from the image including a visual code. Image processing speed of this framework is about 15 fps on iPhone4. Take notice that CoreAR.framework depends on Quartz Help Library and Real time image processing framework for iOS. You have to download these libraries and put on them at the path where CoreAR.framework has been installed.

friday - Fast image IO and transformations.

  •    Haskell

friday is an image processing framework for Haskell. It has been designed to build fast, generic and type-safe image processing algorithms. friday also provide some simple computer vision features such as edge detection or histogram processing.

CloudCV - Large-Scale Distributed Computer Vision As A Cloud Service

  •    NodeJS

An example of using OpenCV library in server environment using Node.js. Here you will see that it's really simple to perform CPU-intense image processing routines in the cloud. A Node.js server handle client requests and calls C++ back-end.

accord-net-extensions - Advanced image processing and computer vision algorithms made as fluent extensions and built for portability

  •    CSharp

Accord.Extensions.Imaging.Algorithms package Implements image processing algorithms as .NET array extensions including the Accord.NET algorithms.Accord.Extensions.Math package Fluent matrix extensions. Geometry and graph structures and extensions.

Scilab Image Processing Toolbox

  •    C

SIP is the image processing and computer vision package for SciLab, a free Matlab-like programming environment. SIP reads/writes images in formats like JPEG, PNG, and BMP. It does filtering, segmentation, edge detection, morphology, and shape analysis.

OpenIMAJ - Open Intelligent Multimedia Analysis for Java

  •    Java

OpenIMAJ is an award-winning set of libraries and tools for multimedia (images, text, video, audio, etc.) content analysis and content generation. OpenIMAJ is very broad and contains everything from state-of-the-art computer vision (e.g. SIFT descriptors, salient region detection, face detection, etc.) and advanced data clustering, through to software that performs analysis on the content, layout and structure of webpages.

pix2pix - Image-to-image translation with conditional adversarial nets

  •    Lua

Image-to-Image Translation with Conditional Adversarial Networks Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros CVPR, 2017. On some tasks, decent results can be obtained fairly quickly and on small datasets. For example, to learn to generate facades (example shown above), we trained on just 400 images for about 2 hours (on a single Pascal Titan X GPU). However, for harder problems it may be important to train on far larger datasets, and for many hours or even days.

QVision: Computer Vision Library for Qt

  •    C++

Computer vision and image processing library for Qt.

LTI-Lib (C++ Computer Vision Library)

  •    Java

LTI-Lib is an object oriented computer vision library written in C++ for Windows/MS-VC++ and Linux/gcc. It provides lots of functionality to solve mathematical problems, many image processing algorithms, some classification tools and much more...

opencv - Open Source Computer Vision Library

  •    C++

Please read the contribution guidelines before starting work on a pull request.