- 979

brain.js is a library of Neural Networks written in JavaScript. 💡 Note: This is a continuation of the harthur/brain repository (which is not maintained anymore). For more details, check out this issue.

https://github.com/brainjs/brain.js#readmehttps://github.com/BrainJS/brain.js

Dependencies:

gpu.js : ^1.2.0

thaw.js : ^2.0.0

Compared to a classical approach, using a Recurrent Neural Networks (RNN) with Long Short-Term Memory cells (LSTMs) require no or almost no feature engineering. Data can be fed directly into the neural network who acts like a black box, modeling the problem correctly. Other research on the activity recognition dataset can use a big amount of feature engineering, which is rather a signal processing approach combined with classical data science techniques. The approach here is rather very simple in terms of how much was the data preprocessed. Let's use Google's neat Deep Learning library, TensorFlow, demonstrating the usage of an LSTM, a type of Artificial Neural Network that can process sequential data / time series.

machine-learning deep-learning lstm human-activity-recognition neural-network rnn recurrent-neural-networks tensorflow activity-recognitionThe Microsoft Cognitive Toolkit is a free, easy-to-use, open-source, commercial-grade toolkit that trains deep learning algorithms to learn like the human brain. It is a unified deep-learning toolkit that describes neural networks as a series of computational steps via a directed graph.

deep-learning neural-networks artificial-intelligenceThis code implements multi-layer Recurrent Neural Network (RNN, LSTM, and GRU) for training/sampling from character-level language models. In other words the model takes one text file as input and trains a Recurrent Neural Network that learns to predict the next character in a sequence. The RNN can then be used to generate text character by character that will look like the original training data. The context of this code base is described in detail in my blog post. If you are new to Torch/Lua/Neural Nets, it might be helpful to know that this code is really just a slightly more fancy version of this 100-line gist that I wrote in Python/numpy. The code in this repo additionally: allows for multiple layers, uses an LSTM instead of a vanilla RNN, has more supporting code for model checkpointing, and is of course much more efficient since it uses mini-batches and can run on a GPU.

Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

neural-network machine-learning tensorflow keras deeplearningRNNSharp is a toolkit of deep recurrent neural network which is widely used for many different kinds of tasks, such as sequence labeling, sequence-to-sequence and so on. It's written by C# language and based on .NET framework 4.6 or above version. This page introduces what is RNNSharp, how it works and how to use it. To get the demo package, you can access release page.

rnn crf deep-learning machine-learning c-sharp sequence-labeling rnn-model recurrent-neural-networks nlp lstmSynaptic is a javascript neural network library for node.js and the browser, its generalized algorithm is architecture-free, so you can build and train basically any type of first order or even second order neural network architectures. This library includes a few built-in architectures like multilayer perceptrons, multilayer long-short term memory networks (LSTM), liquid state machines or Hopfield networks, and a trainer capable of training any given network, which includes built-in training tasks/tests like solving an XOR, completing a Distracted Sequence Recall task or an Embedded Reber Grammar test, so you can easily test and compare the performance of different architectures.

neural-network machine-learning long-short-term-memory perceptron architecture-freeKomputation is a neural network framework for the JVM written in the Kotlin programming language.

neural-networks framework jvm kotlin nlp machine-learning convolutional-neural-networks recurrent-neural-networks seq2seq artificial-intelligence cuda gpu nvidiaGrenade is a composable, dependently typed, practical, and fast recurrent neural network library for concise and precise specifications of complex networks in Haskell. And that's it. Because the types are so rich, there's no specific term level code required to construct this network; although it is of course possible and easy to construct and deconstruct the networks and layers explicitly oneself.

machine-learning deep-neural-networks haskell deep-learning generative-adversarial-networks convolutional-neural-networksImplements most of the great things that came out in 2014 concerning recurrent neural networks, and some good optimizers for these types of networks. This module also contains the SGD, AdaGrad, and AdaDelta gradient descent methods that are constructed using an objective function and a set of theano variables, and returns an updates dictionary to pass to a theano function.

machine-learning recurrent-networks theano lstm gru adadelta dropout automatic-differentiation neural-network tutorialThis is a Tensorflow implementation of Conditional Image Generation with PixelCNN Decoders which introduces the Gated PixelCNN model based on PixelCNN architecture originally mentioned in Pixel Recurrent Neural Networks. The model can be conditioned on latent representation of labels or images to generate images accordingly. Images can also be modelled unconditionally. It can also act as a powerful decoder and can replace deconvolution (transposed convolution) in Autoencoders and GANs. A detailed summary of the paper can be found here. The gating accounts for remembering the context and model more complex interactions, like in LSTM. The network stack on the left is the Vertical stack that takes care of blind spots that occure while convolution due to the masking layer (Refer the Pixel RNN paper to know more about masking). Use of residual connection significantly improves the model performance.

deep-learning generative-algorithm paper convolution deepmind tensorflowTrending deep learning Github repositories can be found here. Hint: This will be updated regularly.

deep-learning deep-neural-networks deep-reinforcement-learning convolutional-neural-networks recurrent-neural-networks stargazers-count artificial-neural-networks artificial-intelligence machine-learning top-repositoriesTensorFlow implementation of Deep Convolutional Generative Adversarial Networks, Variational Autoencoder (also Deep and Convolutional) and DRAW: A Recurrent Neural Network For Image Generation. Deep Convolutional Generative Adversarial Networks produce decent results after 10 epochs using default parameters.

tensorflow draw recurrent-neural-networks gan vaeThis code implements a recurrent neural network trained to generate classical music. The model, which uses LSTM layers and draws inspiration from convolutional neural networks, learns to predict which notes will be played at each time step of a musical piece. You can read about its design and hear examples on this blog post.

I used this challenge to learn more about neural networks and machine learning. A neural network consists of layers, and each layer has neurons. My network has three layers: an input layer, a hidden layer, and an output layer. The input to my network has 64 binary numbers. These inputs are connected to the neurons in the hidden layer. The hidden layer performs some computation and passes the result to the output layer neuron out. This also performs a computation and then outputs a 0 or a 1. The input layer doesn’t actually do anything, they are just placeholders for the input value. Only the neurons in the hidden layer and the output layer perform computations. The neurons from the input layer are connected to the neurons in the hidden layer. Likewise, both neurons from the hidden layer are connected to the output layer. These kinds of layers are called fully-connected because every neuron is connected to every neuron in the next layer. Each connection between two neurons has a weight, which is just a number. These weights form the brain of my network. For the activation function in my network, I use the sigmoid function. Sigmoid is a mathematical function. The sigmoid takes in some number x and converts it into a value between 0 and 1. That is ideal for my purposes, since I am dealing with binary numbers. This will turn a linear equation into something that is non-linear. This is important because without this, the network wouldn’t be able to learn any interesting things. I have already mentioned that the input to this network are 64 binary numbers. I resize the drawn image to 8x8 pixels which makes together 64 pixels. I go through the image and check each pixel if the pixel has a pink color I add a 1 to my array else I add a 0. At the end I will have 64 binary numbers which I can add to my input layer.

neural network apple playground ipad ai machine-learning artificial-intelligenceSome examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples (with input_data.py). MNIST is a database of handwritten digits, for a quick description of that dataset, you can check this notebook.

recurrent-neural-networks convolutional-neural-networks deep-learning-tutorial tensorflow tensorlayer keras deep-reinforcement-learning tensorflow-tutorials deep-learning machine-learning notebook autoencoder multi-layer-perceptron reinforcement-learning tflearn neural-networks neural-network neural-machine-translation nlp cnnA Machine Learning library written in pure Go designed to support relevant neural architectures in Natural Language Processing. spaGO is self-contained, in that it uses its own lightweight computational graph framework for both training and inference, easy to understand from start to finish.

nlp machine-learning natural-language-processing deep-learning neural-network automatic-differentiation artificial-intelligence recurrent-networks lstm computation-graph question-answering bart automatic-translation deeplearning language-model bert transformer-architecture bert-as-service named-entities-recognitionPlease use python 2.7 to install LSTMVis.

lstm neural-network visualization recurrent-neural-networksThe objective is to predict continuous values, sin and cos functions in this example, based on previous observations using the LSTM architecture. This example has been updated with a new version compatible with the tensrflow-1.1.0. This new version is using a library polyaxon that provides an API to create deep learning models and experiments based on tensorflow.

lstm tensorflow recurrent-networks deep-learning sequence-prediction tensorflow-lstm-regression jupyter time-series recurrent-neural-networksThis repository holds the code to a new kind of RNN model for processing sequential data. The model computes a recurrent weighted average (RWA) over every previous processing step. With this approach, the model can form direct connections anywhere along a sequence. This stands in contrast to traditional RNN architectures that only use the previous processing step. A detailed description of the RWA model has been published in a manuscript at https://arxiv.org/pdf/1703.01253.pdf. Because the RWA can be computed as a running average, it does not need to be completely recomputed with each processing step. The numerator and denominator can be saved from the previous step. Consequently, the model scales like that of other RNN models such as the LSTM model.

recurrent-neural-networks sequential-data time-series research rwa-model recurrent-weighted-average deep-memoryConvNetJS is a Javascript implementation of Neural networks, It currently supports Common Neural Network modules, Classification (SVM/Softmax) and Regression (L2) cost functions, A MagicNet class for fully automatic neural network learning (automatic hyperparameter search and cross-validatations), Ability to specify and train Convolutional Networks that process images, An experimental Reinforcement Learning module, based on Deep Q Learning.

artificial-intelligence neural-networks machine-learning deep-learning
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**