ESAT-PSI, KU Leuven, Belgium. Published in CVPR 2018. See project page, arxiv paper, paper on CVF open access.
http://bmax.im/LovaszSoftmaxTags | image-segmentation pytorch neural-networks loss-functions |
Implementation | Jupyter Notebook |
License | MIT |
Platform |
This repository contains the code (in PyTorch) for: "LightNet: Light-weight Networks for Semantic Image Segmentation " (underway) by Huijun Liu @ TU Braunschweig. Semantic Segmentation is a significant part of the modern autonomous driving system, as exact understanding the surrounding scene is very important for the navigation and driving decision of the self-driving car. Nowadays, deep fully convolutional networks (FCNs) have a very significant effect on semantic segmentation, but most of the relevant researchs have focused on improving segmentation accuracy rather than model computation efficiency. However, the autonomous driving system is often based on embedded devices, where computing and storage resources are relatively limited. In this paper we describe several light-weight networks based on MobileNetV2, ShuffleNet and Mixed-scale DenseNet for semantic image segmentation task, Additionally, we introduce GAN for data augmentation[17] (pix2pixHD) concurrent Spatial-Channel Sequeeze & Excitation (SCSE) and Receptive Field Block (RFB) to the proposed network. We measure our performance on Cityscapes pixel-level segmentation, and achieve up to 70.72% class mIoU and 88.27% cat. mIoU. We evaluate the trade-offs between mIoU, and number of operations measured by multiply-add (MAdd), as well as the number of parameters.
semantic-segmentation mobilenet-v2 deeplabv3plus mixedscalenet senet wide-residual-networks dual-path-networks pytorch cityscapes mapillary-vistas-dataset shufflenet inplace-activated-batchnorm encoder-decoder-model mobilenet light-weight-net deeplabv3 mobilenetv2plus rfmobilenetv2plus group-normalization semantic-context-lossPyTorch is a flexible deep learning framework that allows automatic differentiation through dynamic neural networks (i.e., networks that utilise dynamic control flow like if statements and while loops). It supports GPU acceleration, distributed training, various optimisations, and plenty more neat features. These are some notes on how I think about using PyTorch, and don't encompass all parts of the library or every best practice, but may be helpful to others. Neural networks are a subclass of computation graphs. Computation graphs receive input data, and data is routed to and possibly transformed by nodes which perform processing on the data. In deep learning, the neurons (nodes) in neural networks typically transform data with parameters and differentiable functions, such that the parameters can be optimised to minimise a loss via gradient descent. More broadly, the functions can be stochastic, and the structure of the graph can be dynamic. So while neural networks may be a good fit for dataflow programming, PyTorch's API has instead centred around imperative programming, which is a more common way for thinking about programs. This makes it easier to read code and reason about complex programs, without necessarily sacrificing much performance; PyTorch is actually pretty fast, with plenty of optimisations that you can safely forget about as an end user (but you can dig in if you really want to).
deep-learningPytorch-C++ is a simple C++ 11 library which provides a Pytorch-like interface for building neural networks and inference (so far only forward pass is supported). The library respects the semantics of torch.nn module of PyTorch. Models from pytorch/vision are supported and can be easily converted. We also support all the models from our image segmentation repository (scroll down for the gif with example output of one of our segmentation models). The library heavily relies on an amazing ATen library and was inspired by cunnproduction.
The goal is to teach a siamese network to be able to distinguish pairs of images. This project uses pytorch. Any dataset can be used. Each class must be in its own folder. This is the same structure that PyTorch's own image folder dataset uses.
pytorch-tutorial deep-learning neural-network siamese-network pytorch face-recognitionThis tutorial shows how to use Keras library to build deep neural network for ultrasound image nerve segmentation. More info on this Kaggle competition can be found on https://www.kaggle.com/c/ultrasound-nerve-segmentation. This deep neural network achieves ~0.57 score on the leaderboard based on test images, and can be a good staring point for further, more serious approaches.
image-segmentation keras medical-imaging deep-neural-networks convolutional-networksHere we present our wining solution and its improvement for MICCAI 2017 Robotic Instrument Segmentation Sub-Challenge. In this work, we describe our winning solution for MICCAI 2017 Endoscopic Vision Sub-Challenge: Robotic Instrument Segmentation and demonstrate further improvement over that result. Our approach is originally based on U-Net network architecture that we improved using state-of-the-art semantic segmentation neural networks known as LinkNet and TernausNet. Our results shows superior performance for a binary as well as for multi-class robotic instrument segmentation. We believe that our methods can lay a good foundation for the tracking and pose estimation in the vicinity of surgical scenes.
medical-imaging robot-assisted-surgery computer-vision image-segmentation deep-learning pytorchThe purpose of this repository is providing the curated list of the state-of-the-art works on the field of Generative Adversarial Networks since their introduction in 2014. You can also check out the same data in a tabular format with functionality to filter by year or do a quick search by title here.
gan adversarial-networks arxiv neural-network unsupervised-learning adversarial-nets image-synthesis deep-learning generative-adversarial-network medical-imaging tensorflow pytorch paper cgan ct-denoising segmentation medical-image-synthesis reconstruction detection classificationNiftyNet is a consortium of research organisations (BMEIS -- School of Biomedical Engineering and Imaging Sciences, King's College London; WEISS -- Wellcome EPSRC Centre for Interventional and Surgical Sciences, UCL; CMIC -- Centre for Medical Image Computing, UCL; HIG -- High-dimensional Imaging Group, UCL), where BMEIS acts as the consortium lead. NiftyNet is not intended for clinical use.
tensorflow distributed ml neural-network python2 python3 pip deep-neural-networks deep-learning convolutional-neural-networks medical-imaging medical-image-computing medical-image-processing medical-images segmentation gan autoencoder medical-image-analysis image-guided-therapySequence labeling models are quite popular in many NLP tasks, such as Named Entity Recognition (NER), part-of-speech (POS) tagging and word segmentation. State-of-the-art sequence labeling models mostly utilize the CRF structure with input word features. LSTM (or bidirectional LSTM) is a popular deep learning based feature extractor in sequence labeling task. And CNN can also be used due to faster computation. Besides, features within word are also useful to represent word, which can be captured by character LSTM or character CNN structure or human-defined neural features. NCRF++ is a PyTorch based framework with flexiable choices of input features and output structures. The design of neural sequence labeling models with NCRF++ is fully configurable through a configuration file, which does not require any code work. NCRF++ is a neural version of CRF++, which is a famous statistical CRF framework.
pytorch ner sequence-labeling crf lstm-crf char-rnn char-cnn named-entity-recognition part-of-speech-tagger chunking neural-networks nbest lstm cnn batchRepository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.
deep-learning neural-network machine-learning tensorflow artificial-intelligence data-science pytorchCompute Library for Deep Neural Networks (clDNN) is an open source performance library for Deep Learning (DL) applications intended for acceleration of DL Inference on Intel® Processor Graphics – including HD Graphics and Iris® Graphics. clDNN includes highly optimized building blocks for implementation of convolutional neural networks (CNN) with C and C++ interfaces. We created this project to enable the DL community to innovate on Intel® processors. Usages supported: Image recognition, image detection, and image segmentation.
deep-neural-networks deep-learning intel intel-hd-graphics cldnnPyTorch implementation of StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. StarGAN can flexibly translate an input image to any desired target domain using only a single generator and a discriminator.
stargan gan image-to-image-translation pytorch generative-adversarial-network image-manipulation computer-vision neural-networksAmazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
pytorch data-augmentation kaggle-competition kaggle deep-learning computer-vision keras neural-networks neural-network-example transfer-learningWe introduce a large-margin softmax (L-Softmax) loss for convolutional neural networks. L-Softmax loss can greatly improve the generalization ability of CNNs, so it is very suitable for general classification, feature embedding and biometrics (e.g. face) verification. We give the 2D feature visualization on MNIST to illustrate our L-Softmax loss. The paper is published in ICML 2016 and also available at arXiv.
l-softmax icml-2016 lsoftmax-loss caffe face-recognition image-recognition deep-learningThis repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included by ModelDepot. We also provide Torch implementation and MXNet implementation. Image Style Transfer Using Convolutional Neural Networks by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
style-transfer deep-neural-networks real-timeThis repository contains the (1) Learned Perceptual Image Patch Similarity (LPIPS) metric and (2) Berkeley-Adobe Perceptual Patch Similarity (BAPPS) dataset proposed in the paper below. It can also be used as an implementation of the "perceptual loss". The Unreasonable Effectiveness of Deep Features as a Perceptual Metric Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, Oliver Wang. In CVPR, 2018.
deep-learning deep-neural-networks perceptual perceptual-metric perceptual-losses pytorch perceptual-similarityPyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in README.md are genearted by neural network except the first image for each row. * Network structure is slightly diffferent (here) from the author's code.
gan generative-model unsupervised-learning pytorchPyTorch is a deep learning framework that puts Python first. It is a python package that provides Tensor computation (like numpy) with strong GPU acceleration, Deep Neural Networks built on a tape-based autograd system. You can reuse your favorite python packages such as numpy, scipy and Cython to extend PyTorch when needed.
neural-network autograd gpu numpy deep-learning tensorSo far, the library contains an implementation of FCN-32s (Long et al.), Resnet-18-8s, Resnet-34-8s (Chen et al.) image segmentation models in Pytorch and Pytorch/Vision library with training routine, reported accuracy, trained models for PASCAL VOC 2012 dataset. To train these models on your data, you will have to write a dataloader for your dataset. Models for Object Detection will be released soon.
Pixel-wise segmentation on the VOC2012 dataset using pytorch. For a more complete implementation of segmentation networks checkout semseg.
pytorch semantic-segmentation computer-vision segnet fcn
We have large collection of open source products. Follow the tags from
Tag Cloud >>
Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
Add Projects.