- 537

Fast Python Collaborative Filtering for Implicit Datasets. Alternating Least Squares as described in the papers Collaborative Filtering for Implicit Feedback Datasets and Applications of the Conjugate Gradient Method for Implicit Feedback Collaborative Filtering.

https://github.com/benfred/implicitTags | collaborative-filtering machine-learning matrix-factorization recommender-system |

Implementation | Python |

License | MIT |

Platform | Windows Linux |

LibRec (http://www.librec.net) is a Java library for recommender systems (Java version 1.7 or higher required). It implements a suit of state-of-the-art recommendation algorithms, aiming to resolve two classic recommendation tasks: rating prediction and item ranking. A movie recommender system is designed and available here.

recommender-systems recommendation-algorithms collaborative-filtering matrix-factorization tensor-factorization probabilistic-graphical-models recommender systems factorization matrix tensor collaborative filtering sparseLightFM is a Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback, including efficient implementation of BPR and WARP ranking losses. It's easy to use, fast (via multithreaded model estimation), and produces high quality results. It also makes it possible to incorporate both item and user metadata into the traditional matrix factorization algorithms. It represents each user and item as the sum of the latent representations of their features, thus allowing recommendations to generalise to new items (via item features) and to new users (via user features).

machine-learning recommender matrix-factorization learning-to-rank recommender-systemThe Universal Recommender (UR) is a new type of collaborative filtering recommender based on an algorithm that can use data from a wide variety of user preference indicators—it is called the Correlated Cross-Occurrence algorithm. Unlike matrix factorization embodied in things like MLlib's ALS, CCO is able to ingest any number of user actions, events, profile data, and contextual information. It then serves results in a fast and scalable way. It also supports item properties for building flexible business rules for filtering and boosting recommendations and can therefor be considered a hybrid collaborative filtering and content-based recommender. Most recommenders can only use conversion events, like buy or rate. Using all we know about a user and their context allows us to much better predict their preferences.

Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various pointwise and pairwise ranking losses), representations (shallow factorization representations, deep sequence models), and utilities for fetching (or generating) recommendation datasets, it aims to be a tool for rapid exploration and prototyping of new recommender models. See the full documentation for details.

recommender-system deep-learning learning-to-rank machine-learning matrix-factorization pytorchPython implementation of implicit matrix factorization as outlined in Collaborative Filtering for Implicit Feedback Datasets. Requires numpy version 1.7.1 or greater and scipy version 0.12.0 or greater.

More examples could be found in the example folder. All models are tested by 5-fold cross validation on a PC with Intel(R) Core(TM) i5-4590 CPU (3.30GHz) and 16.0GB RAM. All scores are the best scores achieved by gorse yet.

recommender-system svd svdplusplus knn slope-one co-clustering nmf machine-learning recommender bpr collaborative-filtering data-mining machinelearning avx2The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citations of the software. If you publish scientific articles using fastFM, please cite the following article (bibtex entry citation.bib). This repository allows you to use Factorization Machines in Python (2.7 & 3.x) with the well known scikit-learn API. All performance critical code as been written in C and wrapped with Cython. fastFM provides stochastic gradient descent (SGD) and coordinate descent (CD) optimization routines as well as Markov Chain Monte Carlo (MCMC) for Bayesian inference. The solvers can be used for regression, classification and ranking problems. Detailed usage instructions can be found in the online documentation and on arXiv.

machine-learning recommender-system factorization-machines matrix-factorizationxLearn is a high performance, easy-to-use, and scalable machine learning package, which can be used to solve large-scale machine learning problems. xLearn is especially useful for solving machine learning problems on large-scale sparse data, which is very common in Internet services such as online advertisement and recommender systems in recent years. If you are the user of liblinear, libfm, or libffm, now xLearn is your another better choice. xLearn is developed with high-performance C++ code with careful design and optimizations. Our system is designed to maximize CPU and memory utilization, provide cache-aware computation, and support lock-free learning. By combining these insights, xLearn is 5x-13x faster compared to similar systems.

machine-learning statistics data-science data-analysisBook recommender system using collaborative filtering based on Spark

spark collaborative-filtering recommendation-system python-flaskRumale (Ruby machine learning) is a machine learning library in Ruby. Rumale provides machine learning algorithms with interfaces similar to Scikit-Learn in Python. Rumale supports Linear / Kernel Support Vector Machine, Logistic Regression, Linear Regression, Ridge, Lasso, Kernel Ridge, Factorization Machine, Naive Bayes, Decision Tree, AdaBoost, Gradient Tree Boosting, Random Forest, Extra-Trees, K-nearest neighbor classifier, K-Means, K-Medoids, Gaussian Mixture Model, DBSCAN, SNN, Power Iteration Clustering, Mutidimensional Scaling, t-SNE, Principal Component Analysis, Kernel PCA and Non-negative Matrix Factorization. This project was formerly known as "SVMKit". If you are using SVMKit, please install Rumale and replace SVMKit constants with Rumale.

machine-learning data-science data-analysis artificial-intelligenceApache Mahout has implementations of a wide range of machine learning and data mining algorithms: clustering, classification, collaborative filtering and frequent pattern mining.

machine-learning classification data-mining fuzzySurprise is a Python scikit building and analyzing recommender systems that deal with explicit rating data. The name SurPRISE (roughly :) ) stands for Simple Python RecommendatIon System Engine.

recommender systems recommendation svd matrix factorizationThis Apache Spark tutorial will guide you step-by-step into how to use the MovieLens dataset to build a movie recommender using collaborative filtering with Spark's Alternating Least Saqures implementation. It is organised in two parts. The first one is about getting and parsing movies and ratings data into Spark RDDs. The second is about building and using the recommender and persisting it for later use in our on-line recommender system. This tutorial can be used independently to build a movie recommender model based on the MovieLens dataset. Most of the code in the first part, about how to use ALS with the public MovieLens dataset, comes from my solution to one of the exercises proposed in the CS100.1x Introduction to Big Data with Apache Spark by Anthony D. Joseph on edX, that is also publicly available since 2014 at Spark Summit. Starting from there, I've added with minor modifications to use a larger dataset, then code about how to store and reload the model for later use, and finally a web service using Flask.

movie-recommendation movielens-dataset spark flask big-data bigdataYtk-learn is a distributed machine learning library which implements most of popular machine learning algorithms

machine-learning distributed gbm gbdt logistic-regression factorization-machines spark hadoopConjecture is a framework for building machine learning models in Hadoop using the Scalding DSL. The goal of this project is to enable the development of statistical models as viable components in a wide range of product settings. Applications include classification and categorization, recommender systems, ranking, filtering, and regression (predicting real-valued numbers). Conjecture has been designed with a primary emphasis on flexibility and can handle a wide variety of inputs. Integration with Hadoop and scalding enable seamless handling of extremely large data volumes, and integration with established ETL processes. Predicted labels can either be consumed directly by the web stack using the dataset loader, or models can be deployed and consumed by live web code. Currently, binary classification (assigning one of two possible labels to input data points) is the most mature component of the Conjecture package.There are a few stages involved in training a machine learning model using Conjecture.

Armadillo: fast C++ library for linear algebra & scientific computing - http://arma.sourceforge.net

linear-algebra matrix matrix-functions linear-algebra-library statistics matlab blas lapack hpc scientific-computing mkl machine-learning armadillo openmp gaussian-mixture-models cpp11 vector sparse-matrix expression-template matrix-factorizationRecSim is a configurable platform for authoring simulation environments for recommender systems (RSs) that naturally supports sequential interaction with users. RecSim allows the creation of new environments that reflect particular aspects of user behavior and item structure at a level of abstraction well-suited to pushing the limits of current reinforcement learning (RL) and RS techniques in sequential interactive recommendation problems. Environments can be easily configured that vary assumptions about: user preferences and item familiarity; user latent state and its dynamics; and choice models and other user response behavior. We outline how RecSim offers value to RL and RS researchers and practitioners, and how it can serve as a vehicle for academic-industrial collaboration. For a detailed description of the RecSim architecture please read Ie et al. Please cite the paper if you use the code from this repository in your work. This is not an officially supported Google product.

machine-learning google reinforcement-learning simulation tensorflow artificial-intelligence recommender-systemParacel is a distributed computational framework, designed for many machine learning problems: Logistic Regression, SVD, Matrix Factorization(BFGS, sgd, als, cg), LDA, Lasso... Firstly, paracel splits both massive dataset and massive parameter space. Unlike Mapreduce-Like Systems, paracel offers a simple communication model, allowing you to work with a global and distributed key-value storage, which is called parameter server.

machine-learning distributed-computing graph c-plus-plusThe model is based on deep AutoEncoders. The code is intended to run on GPU. Last test can take a minute or two.

deep-autoencoders collaborative-filtering deep-learning gpu recommendation-engineMoviebox is a content based machine learning recommending system build with the powers of tf-idf and cosine similarities. Initially, a natural number, that corresponds to the ID of a unique movie title, is accepted as input from the user. Through tf-idf the plot summaries of 5000 different movies that reside in the dataset, are analyzed and vectorized. Next, a number of movies is chosen as recommendations based on their cosine similarity with the vectorized input movie. Specifically, the cosine value of the angle between any two non-zero vectors, resulting from their inner product, is used as the primary measure of similarity. Thus, only movies whose story and meaning are as close as possible to the initial one, are displayed to the user as recommendations.

movie recommender machine unsupervised learning tf-idf
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**