fastText_multilingual - Multilingual word vectors in 78 languages

  •        50

Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; meaning that while similar words within a language share similar vectors, translation words from different languages do not have similar vectors. In a recent paper at ICLR 2017, we showed how the SVD can be used to learn a linear transformation (a matrix), which aligns monolingual vectors from two languages in a single vector space. In this repository we provide 78 matrices, which can be used to align the majority of the fastText languages in a single space. Word embeddings define the similarity between two words by the normalised inner product of their vectors. The matrices in this repository place languages in a single space, without changing any of these monolingual similarity relationships. When you use the resulting multilingual vectors for monolingual tasks, they will perform exactly the same as the original vectors. To learn more about word embeddings, check out Colah's blog or Sam's introduction to vector representations.

https://github.com/Babylonpartners/fastText_multilingual

Tags
Implementation
License
Platform

   




Related Projects

magnitude - A fast, efficient universal vector embedding utility package.

  •    Python

A feature-packed Python package and vector storage file format for utilizing vector embeddings in machine learning models in a fast, efficient, and simple manner developed by Plasticity. It is primarily intended to be a simpler / faster alternative to Gensim, but can be used as a generic key-vector store for domains outside NLP. Vector space embedding models have become increasingly common in machine learning and traditionally have been popular for natural language processing applications. A fast, lightweight tool to consume these large vector space embedding models efficiently is lacking.

spaCy - 💫 Industrial-strength Natural Language Processing (NLP) with Python and Cython

  •    Python

spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. spaCy comes with pre-trained statistical models and word vectors, and currently supports tokenization for 20+ languages. It features the fastest syntactic parser in the world, convolutional neural network models for tagging, parsing and named entity recognition and easy deep learning integration. It's commercial open-source software, released under the MIT license. 💫 Version 2.0 out now! Check out the new features here.

gensim - Topic Modelling for Humans

  •    Python

Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Target audience is the natural language processing (NLP) and information retrieval (IR) community. If this feature list left you scratching your head, you can first read more about the Vector Space Model and unsupervised document analysis on Wikipedia.

PyTorch-NLP - Supporting Rapid Prototyping with a Toolkit (incl. Datasets and Neural Network Layers)

  •    Python

PyTorch-NLP, or torchnlp for short, is a library of neural network layers, text processing modules and datasets designed to accelerate Natural Language Processing (NLP) research. Join our community, add datasets and neural network layers! Chat with us on Gitter and join the Google Group, we're eager to collaborate with you.

spark-nlp - Natural Language Understanding Library for Apache Spark.

  •    Jupyter

John Snow Labs Spark-NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment. This library has been uploaded to the spark-packages repository https://spark-packages.org/package/JohnSnowLabs/spark-nlp .


neuralmonkey - An open-source tool for sequence learning in NLP built on TensorFlow.

  •    Python

The Neural Monkey package provides a higher level abstraction for sequential neural network models, most prominently in Natural Language Processing (NLP). It is built on TensorFlow. It can be used for fast prototyping of sequential models in NLP which can be used e.g. for neural machine translation or sentence classification. The higher-level API brings together a collection of standard building blocks (RNN encoder and decoder, multi-layer perceptron) and a simple way of adding new building blocks implemented directly in TensorFlow.

nlp-with-ruby - Practical Natural Language Processing done in Ruby.

  •    Ruby

This curated list comprises awesome resources, libraries, information sources about computational processing of texts in human languages with the Ruby programming language. That field is often referred to as NLP, Computational Linguistics, HLT (Human Language Technology) and can be brought in conjunction with Artificial Intelligence, Machine Learning, Information Retrieval, Text Mining, Knowledge Extraction and other related disciplines. This list comes from our day to day work on Language Models and NLP Tools. Read why this list is awesome. Our FAQ describes the important decisions and useful answers you may be interested in.

lectures - Oxford Deep NLP 2017 course

  •    

This repository contains the lecture slides and course description for the Deep Natural Language Processing course offered in Hilary Term 2017 at the University of Oxford. This is an applied course focussing on recent advances in analysing and generating speech and text using recurrent neural networks. We introduce the mathematical definitions of the relevant machine learning models and derive their associated optimisation algorithms. The course covers a range of applications of neural networks in NLP including analysing latent dimensions in text, transcribing speech to text, translating between languages, and answering questions. These topics are organised into three high level themes forming a progression from understanding the use of neural networks for sequential language modelling, to understanding their use as conditional language models for transduction tasks, and finally to approaches employing these techniques in combination with other mechanisms for advanced applications. Throughout the course the practical implementation of such models on CPU and GPU hardware is also discussed.

pattern - Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization

  •    Python

It is well documented, thoroughly tested with 350+ unit tests and comes bundled with 50+ examples. The source code is licensed under BSD and available from http://www.clips.ua.ac.be/pages/pattern. This example trains a classifier on adjectives mined from Twitter using Python 3. First, tweets that contain hashtag #win or #fail are collected. For example: "$20 tip off a sweet little old lady today #win". The word part-of-speech tags are then parsed, keeping only adjectives. Each tweet is transformed to a vector, a dictionary of adjective → count items, labeled WIN or FAIL. The classifier uses the vectors to learn which other tweets look more like WIN or more like FAIL.

decaNLP - The Natural Language Decathlon: A Multitask Challenge for NLP

  •    Python

The Natural Language Decathlon is a multitask challenge that spans ten tasks: question answering (SQuAD), machine translation (IWSLT), summarization (CNN/DM), natural language inference (MNLI), sentiment analysis (SST), semantic role labeling(QA‑SRL), zero-shot relation extraction (QA‑ZRE), goal-oriented dialogue (WOZ, semantic parsing (WikiSQL), and commonsense reasoning (MWSC). Each task is cast as question answering, which makes it possible to use our new Multitask Question Answering Network (MQAN). This model jointly learns all tasks in decaNLP without any task-specific modules or parameters in the multitask setting. For a more thorough introduction to decaNLP and the tasks, see the main website, our blog post, or the paper. While the research direction associated with this repository focused on multitask learning, the framework itself is designed in a way that should make single-task training, transfer learning, and zero-shot evaluation simple. Similarly, the paper focused on multitask learning as a form of question answering, but this framework can be easily adapted for different approached to single-task or multitask learning.

pytextrank - Python implementation of TextRank for text document NLP parsing and summarization

  •    Jupyter

Python implementation of TextRank, based on the Mihalcea 2004 paper. The results produced by this implementation are intended more for use as feature vectors in machine learning, not as academic paper summaries.

sense2vec - 🦆 Use NLP to go beyond vanilla word2vec

  •    C++

sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting, detailed and context-sensitive word vectors. For an interactive example of the technology, see our sense2vec demo that lets you explore semantic similarities across all Reddit comments of 2015. This library is a simple Python/Cython implementation for loading and querying sense2vec models. While it's best used in combination with spaCy, the sense2vec library itself is very lightweight and can also be used as a standalone module. See below for usage details.

pynlpl - PyNLPl, pronounced as 'pineapple', is a Python library for Natural Language Processing

  •    Python

PyNLPl, pronounced as 'pineapple', is a Python library for Natural Language Processing. It contains various modules useful for common, and less common, NLP tasks. PyNLPl can be used for basic tasks such as the extraction of n-grams and frequency lists, and to build simple language model. There are also more complex data types and algorithms. Moreover, there are parsers for file formats common in NLP (e.g. FoLiA/Giza/Moses/ARPA/Timbl/CQL). There are also clients to interface with various NLP specific servers. PyNLPl most notably features a very extensive library for working with FoLiA XML (Format for Linguistic Annotatation). The library is a divided into several packages and modules. It works on Python 2.7, as well as Python 3.

gt-nlp-class - Course materials for Georgia Tech CS 4650 and 7650, "Natural Language"

  •    TeX

This course gives an overview of modern data-driven techniques for natural language processing. The course moves from shallow bag-of-words models to richer structural representations of how words interact to create meaning. At each level, we will discuss the salient linguistic phemonena and most successful computational models. Along the way we will cover machine learning techniques which are especially relevant to natural language processing. Readings will be drawn mainly from my notes. Additional readings may be assigned from published papers, blogposts, and tutorials.

BotSharp - The Open Source AI Chatbot Platform Builder in 100% C# Running in

  •    CSharp

BotSharp is an open source machine learning framework for AI Bot platform builder. This project involves natural language understanding, computer vision and audio processing technologies, and aims to promote the development and application of intelligent robot assistants in information systems. Out-of-the-box machine learning algorithms allow ordinary programmers to develop artificial intelligence applications faster and easier. It's witten in C# running on .Net Core that is full cross-platform framework. C# is a enterprise grade programming language which is widely used to code business logic in information management related system. More friendly to corporate developers. BotSharp adopts machine learning algrithm in C# directly. That will facilitate the feature of the typed language C#, and be more easier when refactoring code in system scope.

thinc - 🔮 spaCy's Machine Learning library for NLP in Python

  •    Assembly

Thinc is the machine learning library powering spaCy. It features a battle-tested linear model designed for large sparse learning problems, and a flexible neural network model under development for spaCy v2.0. Thinc is a practical toolkit for implementing models that follow the "Embed, encode, attend, predict" architecture. It's designed to be easy to install, efficient for CPU usage and optimised for NLP and deep learning with text – in particular, hierarchically structured input and variable-length sequences.

Smile - Statistical Machine Intelligence & Learning Engine

  •    Java

Smile (Statistical Machine Intelligence and Learning Engine) is a fast and comprehensive machine learning, NLP, linear algebra, graph, interpolation, and visualization system in Java and Scala. With advanced data structures and algorithms, Smile delivers state-of-art performance.Smile covers every aspect of machine learning, including classification, regression, clustering, association rule mining, feature selection, manifold learning, multidimensional scaling, genetic algorithms, missing value imputation, efficient nearest neighbor search, etc.

nlpcaffe - natural language processing with Caffe

  •    C++

NLP-Caffe is a pull request [1] on the Caffe framework developed by Yangqing Jia and Evan Shelhamer, among other members of the BVLC lab at Berkeley and a large number of independent online contributers. This fork makes it easier for NLP users to get started without merging C++ code. The current example constructs a language model for a small subset of Google's Billion Word corpus. It uses a two-layer LSTM architecture that processes in excess of 15,000 words per second [2], and achieves a perplexity of 79. More examples for Machine Translation using the encoder-decoder model and character-level RNNs are in the works. This code will eventually be merged into the Caffe master branch. This work was funded by the Stanford NLP Group, under the guidance of Chris Manning, and with the invaluable expertise of Thang Luong.