- 381

You can download the model here. You can download the model here.

https://github.com/atulkum/pointer_summarizerTags | nlp deep-learning attention-mechanism summarization pointer-networks pytorch-implmention seq2seq-attn |

Implementation | Python |

License | Public |

Platform | Windows Linux |

NOTE: THE CODE IS UNDER DEVELOPMENT, PLEASE ALWAYS PULL THE LATEST VERSION FROM HERE. In recent years, sequence-to-sequence (seq2seq) models are used in a variety of tasks from machine translation, headline generation, text summarization, speech to text, to image caption generation. The underlying framework of all these models are usually a deep neural network which contains an encoder and decoder. The encoder processes the input data and a decoder receives the output of the encoder and generates the final output. Although simply using an encoder/decoder model would, most of the time, produce better result than traditional methods on the above-mentioned tasks, researchers proposed additional improvements over these sequence to sequence models, like using an attention-based model over the input, pointer-generation models, and self-attention models. However, all these seq2seq models suffer from two common problems: 1) exposure bias and 2) inconsistency between train/test measurement. Recently a completely fresh point of view emerged in solving these two problems in seq2seq models by using methods in Reinforcement Learning (RL). In these new researches, we try to look at the seq2seq problems from the RL point of view and we try to come up with a formulation that could combine the power of RL methods in decision-making and sequence to sequence models in remembering long memories. In this paper, we will summarize some of the most recent frameworks that combines concepts from RL world to the deep neural network area and explain how these two areas could benefit from each other in solving complex seq2seq tasks. In the end, we will provide insights on some of the problems of the current existing models and how we can improve them with better RL models. We also provide the source code for implementing most of the models that will be discussed in this paper on the complex task of abstractive text summarization.

reinforcement-learning actor-critic policy-gradient abstractive-text-summarization pointer-generator nlpA vanilla sequence to sequence model presented in https://arxiv.org/abs/1409.3215, https://arxiv.org/abs/1406.1078 consits of using a recurrent neural network such as an LSTM (http://dl.acm.org/citation.cfm?id=1246450) or GRU (https://arxiv.org/abs/1412.3555) to encode a sequence of words or characters in a source language into a fixed length vector representation and then deocoding from that representation using another RNN in the target language. An extension of sequence to sequence models that incorporate an attention mechanism was presented in https://arxiv.org/abs/1409.0473 that uses information from the RNN hidden states in the source language at each time step in the deocder RNN. This attention mechanism significantly improves performance on tasks like machine translation. A few variants of the attention model for the task of machine translation have been presented in https://arxiv.org/abs/1508.04025.

pytorch seq2seq deep-learning rnnFelix Hieber, Tobias Domhan, Michael Denkowski, David Vilar, Artem Sokolov, Ann Clifton and Matt Post (2017): Sockeye: A Toolkit for Neural Machine Translation. In eprint arXiv:cs-CL/1712.05690.If you are interested in collaborating or have any questions, please submit a pull request or issue. You can also send questions to sockeye-dev-at-amazon-dot-com.

deep-learning deep-neural-networks mxnet machine-learning machine-translation neural-machine-translation encoder-decoder attention-mechanism sequence-to-sequence sequence-to-sequence-models sockeye attention-is-all-you-need attention-alignment-visualization attention-model seq2seq convolutional-neural-networks translationMinimal Seq2Seq model with attention for neural machine translation in PyTorch. This implementation relies on torchtext to minimize dataset management and preprocessing parts.

seq2seq deep-learning machine-translationChainer-based Python implementation of Transformer, an attention-based seq2seq model without convolution and recurrence. If you want to see the architecture, please see net.py. See "Attention Is All You Need", Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, arxiv, 2017.

chainer neural-network deep-learning deep-neural-networks attention-mechanism googleNeural Machine Translation with Keras (Theano and Tensorflow). for obtaining the required packages for running this library.

neural-machine-translation keras deep-learning sequence-to-sequence theano machine-learning nmt machine-translation lstm-networks gru tensorflow attention-mechanism web-demo transformer attention-is-all-you-need attention-model attention-seq2seqthe purpose of this repository is to explore text classification methods in NLP with deep learning. sentence similarity project has been released you can check it if you like.

classification nlp fasttext textcnn textrnn tensorflow multi-label multi-class attention-mechanism text-classification convolutional-neural-networks sentence-classification memory-networksA comprehensive list of Deep Learning / Artificial Intelligence and Machine Learning tutorials - rapidly expanding into areas of AI/Deep Learning / Machine Vision / NLP and industry specific areas such as Automotives, Retail, Pharma, Medicine, Healthcare by Tarry Singh until at-least 2020 until he finishes his Ph.D. (which might end up being inter-stellar cosmic networks! Who knows! 😀)

machine-learning deep-learning tensorflow pytorch keras matplotlib aws kaggle pandas scikit-learn torch artificial-intelligence neural-network convolutional-neural-networks tensorflow-tutorials python-data ipython-notebook capsule-networkTensorFlow implementation of Pointer Networks. Support multithreaded data pipelines to reduce I/O latency.

tensorflow pointer-networks deep-learningNote: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have updated this code for newer versions of Tensorflow and Python - see information below and Issues section. This repository contains code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks. For an intuitive overview of the paper, read the blog post.

UPDATE: Check-out the beta release of OpenNMT a fully supported feature-complete rewrite of seq2seq-attn. Seq2seq-attn will remain supported, but new features and optimizations will focus on the new codebase. Torch implementation of a standard sequence-to-sequence model with (optional) attention where the encoder-decoder are LSTMs. Encoder can be a bidirectional LSTM. Additionally has the option to use characters (instead of input word embeddings) by running a convolutional neural network followed by a highway network over character embeddings to use as inputs.

The code uses PyTorch https://pytorch.org. Note that the original experiments were done using torch-autograd, we have so far validated that CIFAR-10 experiments are exactly reproducible in PyTorch, and are in process of doing so for ImageNet (results are very slightly worse in PyTorch, due to hyperparameters). This section describes how to get the results in the table 1 of the paper.

pytorch knowledge-distillation attention deep-learningPyTorch is a flexible deep learning framework that allows automatic differentiation through dynamic neural networks (i.e., networks that utilise dynamic control flow like if statements and while loops). It supports GPU acceleration, distributed training, various optimisations, and plenty more neat features. These are some notes on how I think about using PyTorch, and don't encompass all parts of the library or every best practice, but may be helpful to others. Neural networks are a subclass of computation graphs. Computation graphs receive input data, and data is routed to and possibly transformed by nodes which perform processing on the data. In deep learning, the neurons (nodes) in neural networks typically transform data with parameters and differentiable functions, such that the parameters can be optimised to minimise a loss via gradient descent. More broadly, the functions can be stochastic, and the structure of the graph can be dynamic. So while neural networks may be a good fit for dataflow programming, PyTorch's API has instead centred around imperative programming, which is a more common way for thinking about programs. This makes it easier to read code and reason about complex programs, without necessarily sacrificing much performance; PyTorch is actually pretty fast, with plenty of optimisations that you can safely forget about as an end user (but you can dig in if you really want to).

deep-learningRepository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

deep-learning neural-network machine-learning tensorflow artificial-intelligence data-science pytorchPyTorch is a deep learning framework that puts Python first. It is a python package that provides Tensor computation (like numpy) with strong GPU acceleration, Deep Neural Networks built on a tape-based autograd system. You can reuse your favorite python packages such as numpy, scipy and Cython to extend PyTorch when needed.

neural-network autograd gpu numpy deep-learning tensorPyTorch-NLP, or torchnlp for short, is a library of neural network layers, text processing modules and datasets designed to accelerate Natural Language Processing (NLP) research. Join our community, add datasets and neural network layers! Chat with us on Gitter and join the Google Group, we're eager to collaborate with you.

pytorch nlp natural-language-processing pytorch-nlp torchnlp data-loader embeddings word-vectors deep-learning dataset metrics neural-network sru machine-learningAn Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. If you need pointers on setting up an appropriate Python environment or would like to install AllenNLP using a different method, see below.

pytorch nlp natural-language-processing deep-learning data-sciencePyTorch Geometric is a geometric deep learning extension library for PyTorch. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.

pytorch geometric-deep-learning graph mesh neural-networks spline-cnnThis repository contains the lecture slides and course description for the Deep Natural Language Processing course offered in Hilary Term 2017 at the University of Oxford. This is an applied course focussing on recent advances in analysing and generating speech and text using recurrent neural networks. We introduce the mathematical definitions of the relevant machine learning models and derive their associated optimisation algorithms. The course covers a range of applications of neural networks in NLP including analysing latent dimensions in text, transcribing speech to text, translating between languages, and answering questions. These topics are organised into three high level themes forming a progression from understanding the use of neural networks for sequential language modelling, to understanding their use as conditional language models for transduction tasks, and finally to approaches employing these techniques in combination with other mechanisms for advanced applications. Throughout the course the practical implementation of such models on CPU and GPU hardware is also discussed.

deep-learning machine-learning natural-language-processing nlp oxfordThis repository contains material related to Udacity's Deep Reinforcement Learning Nanodegree program. The tutorials lead you through implementing various algorithms in reinforcement learning. All of the code is in PyTorch (v0.4) and Python 3.

deep-reinforcement-learning reinforcement-learning reinforcement-learning-algorithms neural-networks pytorch pytorch-rl ddpg dqn ppo dynamic-programming cross-entropy hill-climbing ml-agents openai-gym-solutions openai-gym rl-algorithms
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**