goscore - Go Scoring API for PMML

  •        49

Go scoring API for Predictive Model Markup Language (PMML). Will be happy to implement new models by demand, or assist with any other issue.

https://github.com/asafschers/goscore

Tags
Implementation
License
Platform

   




Related Projects

useR-machine-learning-tutorial - useR! 2016 Tutorial: Machine Learning Algorithmic Deep Dive http://user2016

  •    Jupyter

Instructions for how to install the necessary software for this tutorial is available here. Data for the tutorial can be downloaded by running ./data/get-data.sh (requires wget). Certain algorithms don't scale well when there are millions of features. For example, decision trees require computing some sort of metric (to determine the splits) on all the feature values (or some fraction of the values as in Random Forest and Stochastic GBM). Therefore, computation time is linear in the number of features. Other algorithms, such as GLM, scale much better to high-dimensional (n << p) and wide data with appropriate regularization (e.g. Lasso, Elastic Net, Ridge).

Apache Mahout - Scalable machine learning library

  •    Java

Apache Mahout has implementations of a wide range of machine learning and data mining algorithms: clustering, classification, collaborative filtering and frequent pattern mining.

rumale - Rumale is a machine learning library in Ruby

  •    Ruby

Rumale (Ruby machine learning) is a machine learning library in Ruby. Rumale provides machine learning algorithms with interfaces similar to Scikit-Learn in Python. Rumale supports Linear / Kernel Support Vector Machine, Logistic Regression, Linear Regression, Ridge, Lasso, Kernel Ridge, Factorization Machine, Naive Bayes, Decision Tree, AdaBoost, Gradient Tree Boosting, Random Forest, Extra-Trees, K-nearest neighbor classifier, K-Means, K-Medoids, Gaussian Mixture Model, DBSCAN, SNN, Power Iteration Clustering, Mutidimensional Scaling, t-SNE, Principal Component Analysis, Kernel PCA and Non-negative Matrix Factorization. This project was formerly known as "SVMKit". If you are using SVMKit, please install Rumale and replace SVMKit constants with Rumale.


grt - gesture recognition toolkit

  •    C++

The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, C++ machine learning library designed for real-time gesture recognition. Classification: Adaboost, Decision Tree, Dynamic Time Warping, Gaussian Mixture Models, Hidden Markov Models, k-nearest neighbor, Naive Bayes, Random Forests, Support Vector Machine, Softmax, and more...

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

interpret - Fit interpretable models. Explain blackbox machine learning.

  •    C++

Historically, the most intelligible models were not very accurate, and the most accurate models were not intelligible. Microsoft Research has developed an algorithm called the Explainable Boosting Machine (EBM)* which has both high accuracy and intelligibility. EBM uses modern machine learning techniques like bagging and boosting to breathe new life into traditional GAMs (Generalized Additive Models). This makes them as accurate as random forests and gradient boosted trees, and also enhances their intelligibility and editability. In addition to EBM, InterpretML also supports methods like LIME, SHAP, linear models, partial dependence, decision trees and rule lists. The package makes it easy to compare and contrast models to find the best one for your needs.

benchm-ml - A minimal benchmark for scalability, speed and accuracy of commonly used open source implementations (R packages, Python scikit-learn, H2O, xgboost, Spark MLlib etc

  •    R

This project aims at a minimal benchmark for scalability, speed and accuracy of commonly used implementations of a few machine learning algorithms. The target of this study is binary classification with numeric and categorical inputs (of limited cardinality i.e. not very sparse) and no missing data, perhaps the most common problem in business applications (e.g. credit scoring, fraud detection or churn prediction). If the input matrix is of n x p, n is varied as 10K, 100K, 1M, 10M, while p is ~1K (after expanding the categoricals into dummy variables/one-hot encoding). This particular type of data structure/size (the largest) stems from this author's interest in some particular business applications. Note: While a large part of this benchmark was done in Spring 2015 reflecting the state of ML implementations at that time, this repo is being updated if I see significant changes in implementations or new implementations have become widely available (e.g. lightgbm). Also, please find a summary of the progress and learnings from this benchmark at the end of this repo.

ranger - A Fast Implementation of Random Forests

  •    C++

ranger is a fast implementation of random forests (Breiman 2001) or recursive partitioning, particularly suited for high dimensional data. Classification, regression, and survival forests are supported. Classification and regression forests are implemented as in the original Random Forest (Breiman 2001), survival forests as in Random Survival Forests (Ishwaran et al. 2008). Includes implementations of extremely randomized trees (Geurts et al. 2006) and quantile regression forests (Meinshausen 2006). ranger is written in C++, but a version for R is available, too. We recommend to use the R version. It is easy to install and use and the results are readily available for further analysis. The R version is as fast as the standalone C++ version.

CloudForest - Ensembles of decision trees in go/golang.

  •    Go

Fast, flexible, multi-threaded ensembles of decision trees for machine learning in pure Go (golang).It can achieve quicker training times then many other popular implementations on some datasets. This is the result of cpu cache friendly memory utilization well suited to modern processors and separate, optimized paths to learn splits from binary, numerical and categorical data.

tpot - A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming

  •    Python

Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.TPOT will automate the most tedious part of machine learning by intelligently exploring thousands of possible pipelines to find the best one for your data.

fast_rgf - Multi-core implementation of Regularized Greedy Forest

  •    C++

This software package provides a multi-core implementation of a simplified Regularized Greedy Forest (RGF) described in [RGF]. Please cite the paper if you find the software useful. RGF is a machine learning method for building decision forests that have been used to win some kaggle competitions. In our experience it works better than gradient boosting on many relatively large datasets.

elasticsearch-learning-to-rank - Plugin to integrate Learning to Rank (aka machine learning for better relevance) with Elasticsearch

  •    Java

Rank Elasticsearch results using tree based (LambdaMART, Random Forest, MART) and linear models. Models are trained using the scores of Elasicsearch queries as features. You train offline using tooling such as with xgboost or ranklib. You then POST your model to a to Elasticsearch in a specific text format (the custom "ranklib" language, documented here). You apply a model using this plugin's ltr query. See blog post and the full demo (training and searching).Models are stored using an Elasticsearch script plugin. Tree-based models can be large. So we recommend increasing the script.max_size_in_bytes setting. Don't worry, just because tree-based models are verbose, doesn't nescesarilly imply they'll be slow.

StatPatternRecognition

  •    C++

The package implements a variety of tools for categorization of multivariate data such as boosted decision trees, bagging and random forest, bump hunting (PRIM), a multi-class learner and others.

limdu - Machine-learning for Node.js

  •    Javascript

Limdu is a machine-learning framework for Node.js. It supports multi-label classification, online learning, and real-time classification. Therefore, it is especially suited for natural language understanding in dialog systems and chat-bots.Limdu is in an "alpha" state - some parts are working (see this readme), but some parts are missing or not tested. Contributions are welcome.

LightGBM - A fast, distributed, high performance gradient boosting (GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks

  •    C++

For more details, please refer to Features.Experiments on public datasets show that LightGBM can outperform existing boosting frameworks on both efficiency and accuracy, with significantly lower memory consumption. What's more, the experiments show that LightGBM can achieve a linear speed-up by using multiple machines for training in specific settings.

NowTrade - Algorithmic trading library with a focus on creating powerful strategies

  •    Python

NowTrade is an algorithmic trading library with a focus on creating powerful strategies using easily-readable and simple Python code. With the help of NowTrade, full blown stock/currency trading strategies, harnessing the power of machine learning, can be implemented with few lines of code. NowTrade strategies are not event driven like most other algorithmic trading libraries available. The strategies are implemented in a sequential manner (one line at a time) without worrying about events, callbacks, or object overloading.