awesome-computer-science-opportunities - An awesome list of events and fellowship opportunities for Computer Science students

  •        3

An awesome list of events and fellowship opportunities for Computer Science students



Related Projects

awesome-datascience - :memo: An awesome Data Science repository to learn and apply for real world problems


An open source Data Science repository to learn and apply towards solving real world problems. First of all, Data Science is one of the hottest topics on the Computer and Internet farmland nowadays. People have gathered data from applications and systems until today and now is the time to analyze them. The next steps are producing suggestions from the data and creating predictions about the future. Here you can find the biggest question for Data Science and hundreds of answers from experts. Our favorite data scientist is Clare Corthell. She is an expert in data-related systems and a hacker, and has been working on a company as a data scientist. Clare's blog. This website helps you to understand the exact way to study as a professional data scientist.

computer-science - :mortar_board: Path to a free self-taught education in Computer Science!


The OSSU curriculum is a complete education in computer science using online materials. It's not merely for career training or professional development. It's for those who want a proper, well-rounded grounding in concepts fundamental to all computing disciplines, and for those who have the discipline, will, and (most importantly!) good habits to obtain this education largely on their own, but with support from a worldwide community of fellow learners. It is designed according to the degree requirements of undergraduate computer science majors, minus general education (non-CS) requirements, as it is assumed most of the people following this curriculum are already educated outside the field of CS. The courses themselves are among the very best in the world, often coming from Harvard, Princeton, MIT, etc., but specifically chosen to meet the following criteria.

computerscience - Free technical resources for faculty, students, and Microsoft developer advocates for use in computer science learning forums

  •    Javascript

The content and code on this repo is intended for computer science instruction as a collaboration with Microsoft developer advocates and Faculty / Students under the MIT license. Please check back regularly for updated versions. This repo provides technical resources to help students and faculty learn about Azure and teach others. The content covers cross-platform scenarios in AI and machine learning, data science, web development, mobile app dev, internet of things, and devops.

awesome-courses - :books: List of awesome university courses for learning Computer Science!


There is a lot of hidden treasure lying within university pages scattered across the internet. This list is an attempt to bring to light those awesome CS courses which make their high-quality material i.e. assignments, lectures, notes, readings & examinations available online for free.

data-science-with-ruby - Practical Data Science with Ruby based tools.

  •    Ruby

Data Science is a new "sexy" buzzword without specific meaning but often used to substitute Statistics, Scientific Computing, Text and Data Mining and Visualization, Machine Learning, Data Processing and Warehousing as well as Retrieval Algorithms of any kind. This curated list comprises awesome tutorials, libraries, information sources about various Data Science applications using the Ruby programming language.

All-About-Programming - Everything about programming!!

  •    Javascript

This is a place for me to keep tracked of what I did or what I want to do and some awesome tips from all the online resources have found. All this resources is about web development and some about computer science. My goal is to be a awesome Full-Stack Web Developer. If you have some resources to shared please do. I'm eager to find new stuff and learn.

papers-we-love - Papers from the computer science community to read and discuss.


Papers We Love (PWL) is a community built around reading, discussing and learning more about academic computer science papers. This repository serves as a directory of some of the best papers the community can find, bringing together documents scattered across the web. You can also visit the Papers We Love site for more info. Due to licenses we cannot always host the papers themselves (when we do, you will see a 📜 emoji next to its title in the directory README) but we can provide links to their locations.

awesome - Awesome resources on Bioinformatics, data science, machine learning, programming language (Python, Golang, R, Perl) and miscellaneous stuff


Collection of useful resources on Bioinformatics, data science, machine learning, programming language (Python, Golang, R, Perl, etc.) and miscellaneous stuff.

awesome-R - A curated list of awesome R packages, frameworks and software.

  •    R

A curated list of awesome R packages and tools. Inspired by awesome-machine-learning. Packages change the way you use R.

machine-learning-with-ruby - Curated list: Resources for machine learning in Ruby.

  •    Ruby

Machine Learning is a field of Computational Science - often nested under AI research - with many practical applications due to the ability of resulting algorithms to systematically implement a specific solution without explicit programmer's instructions. Obviously many algorithms need a definition of features to look at or a biggish training set of data to derive the solution from. This curated list comprises awesome libraries, data sources, tutorials and presentations about Machine Learning utilizing the Ruby programming language.

datascience-box - Data Science Course in a Box

  •    HTML

This introductory data science course that is our (working) answer to these questions. The courses focuses on data acquisition and wrangling, exploratory data analysis, data visualization, and effective communication and approaching statistics from a model-based, instead of an inference-based, perspective. A heavy emphasis is placed on a consitent syntax (with tools from the tidyverse), reproducibility (with R Markdown) and version control and collaboration (with git/GitHub). We help ease the learning curve by avoiding local installation and supplementing out-of-class learning with interactive tools (like learnr tutorials). By the end of the semester teams of students work on fully reproducible data analysis projects on data they acquired, answering questions they care about. This repository serves as a "data science course in a box" containing all materials required to teach (or learn from) the course described above.

awesome-software-quality - List of free software testing and verification resources


This page collects resources for anyone considering the use of software testing and formal methods. There are many axes along which one can organize such a list, such as the level of expertise of the intended audience (from experts to the public at large) or disciplinary orientation (computer science, mathematics, mathematical logic, etc.). Here I have chosen to classify the material by type of subject matter.

Deep-Learning-Boot-Camp - A community run, 5-day PyTorch Deep Learning Bootcamp

  •    Jupyter

Tel-Aviv Deep Learning Bootcamp is an intensive (and free!) 5-day program intended to teach you all about deep learning. It is nonprofit focused on advancing data science education and fostering entrepreneurship. The Bootcamp is a prominent venue for graduate students, researchers, and data science professionals. It offers a chance to study the essential and innovative aspects of deep learning. Participation is via a donation to the A.L.S ASSOCIATION for promoting research of the Amyotrophic Lateral Sclerosis (ALS) disease.

computer-science-in-javascript - Computer science reimplemented in JavaScript

  •    Javascript

This repository contains code about various series of posts that I made on my blog about computer science (mostly data structures and sorting algorithms) reimplemented in JavaScript. The #data-structures series is a collection of posts about reimplemented data structures in JavaScript.