tf-unet - tensorflow version of unet

  •        389

tensorflow version of unet

https://github.com/ankurhanda/tf-unet

Tags
Implementation
License
Platform

   




Related Projects

unet - unet for image segmentation

  •    Jupyter

The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Segmentation. The original dataset is from isbi challenge, and I've downloaded it and done the pre-processing.

unet_keras - unet_keras use image Semantic segmentation

  •    Python

unet_keras use image Semantic segmentation

TernausNet - UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

  •    Jupyter

TernausNet is a modification of the celebrated UNet architecture that is widely used for binary Image Segmentation. For more details, please refer to our arXiv paper. This architecture was a part of the winning solutiuon (1st out of 735 teams) in the Carvana Image Masking Challenge.

retina-unet - Retina blood vessel segmentation with a convolutional neural network

  •    Python

This repository contains the implementation of a convolutional neural network used to segment blood vessels in retina fundus images. This is a binary classification task: the neural network predicts if each pixel in the fundus image is either a vessel or not. The neural network structure is derived from the U-Net architecture, described in this paper. The performance of this neural network is tested on the DRIVE database, and it achieves the best score in terms of area under the ROC curve in comparison to the other methods published so far. Also on the STARE datasets, this method reports one of the best performances. The training of the neural network is performed on sub-images (patches) of the pre-processed full images. Each patch, of dimension 48x48, is obtained by randomly selecting its center inside the full image. Also the patches partially or completely outside the Field Of View (FOV) are selected, in this way the neural network learns how to discriminate the FOV border from blood vessels. A set of 190000 patches is obtained by randomly extracting 9500 patches in each of the 20 DRIVE training images. Although the patches overlap, i.e. different patches may contain same part of the original images, no further data augmentation is performed. The first 90% of the dataset is used for training (171000 patches), while the last 10% is used for validation (19000 patches).

LightNet - LightNet: Light-weight Networks for Semantic Image Segmentation (Cityscapes and Mapillary Vistas Dataset)

  •    Python

This repository contains the code (in PyTorch) for: "LightNet: Light-weight Networks for Semantic Image Segmentation " (underway) by Huijun Liu @ TU Braunschweig. Semantic Segmentation is a significant part of the modern autonomous driving system, as exact understanding the surrounding scene is very important for the navigation and driving decision of the self-driving car. Nowadays, deep fully convolutional networks (FCNs) have a very significant effect on semantic segmentation, but most of the relevant researchs have focused on improving segmentation accuracy rather than model computation efficiency. However, the autonomous driving system is often based on embedded devices, where computing and storage resources are relatively limited. In this paper we describe several light-weight networks based on MobileNetV2, ShuffleNet and Mixed-scale DenseNet for semantic image segmentation task, Additionally, we introduce GAN for data augmentation[17] (pix2pixHD) concurrent Spatial-Channel Sequeeze & Excitation (SCSE) and Receptive Field Block (RFB) to the proposed network. We measure our performance on Cityscapes pixel-level segmentation, and achieve up to 70.72% class mIoU and 88.27% cat. mIoU. We evaluate the trade-offs between mIoU, and number of operations measured by multiply-add (MAdd), as well as the number of parameters.


keras-deeplab-v3-plus - Keras implementation of Deeplab v3+ with pretrained weights

  •    Python

DeepLab is a state-of-art deep learning model for semantic image segmentation. Model is based on the original TF frozen graph. It is possible to load pretrained weights into this model. Weights are directly imported from original TF checkpoint.

semantic-segmentation-pytorch - Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

  •    Python

This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing dataset. This module differs from the built-in PyTorch BatchNorm as the mean and standard-deviation are reduced across all devices during training. The importance of synchronized batch normalization in object detection has been recently proved with a an extensive analysis in the paper MegDet: A Large Mini-Batch Object Detector, and we empirically find that it is also important for segmentation.

AdaptSegNet - Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

  •    Python

Pytorch implementation of our method for adapting semantic segmentation from the synthetic dataset (source domain) to the real dataset (target domain). Based on this implementation, our result is ranked 3rd in the VisDA Challenge. Learning to Adapt Structured Output Space for Semantic Segmentation Yi-Hsuan Tsai*, Wei-Chih Hung*, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang and Manmohan Chandraker IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 (spotlight) (* indicates equal contribution).

tf-image-segmentation - Image Segmentation framework based on Tensorflow and TF-Slim library

  •    Python

So far, the framework contains an implementation of the FCN models (training and evaluation) in Tensorflow and TF-Slim library with training routine, reported accuracy, trained models for PASCAL VOC 2012 dataset. To train these models on your data, convert your dataset to tfrecords and follow the instructions below. The end goal is to provide utilities to convert other datasets, report accuracies on them and provide models.

MNC - Instance-aware Semantic Segmentation via Multi-task Network Cascades

  •    Python

This python version is re-implemented by Haozhi Qi when he was an intern at Microsoft Research. MNC is an instance-aware semantic segmentation system based on deep convolutional networks, which won the first place in COCO segmentation challenge 2015, and test at a fraction of a second per image. We decompose the task of instance-aware semantic segmentation into related sub-tasks, which are solved by multi-task network cascades (MNC) with shared features. The entire MNC network is trained end-to-end with error gradients across cascaded stages.

neural-style-tf - TensorFlow (Python API) implementation of Neural Style

  •    Python

Additionally, techniques are presented for semantic segmentation and multiple style transfer. The relative weight of the style and content can be controlled.

really-awesome-semantic-segmentation - A list of papers on Semantic Segmentation.

  •    

A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar. From March 15, 2018, it will not be updated anymore. To complement or correct it, please contact me at holger-at-it-caesar.com or visit it-caesar.com. Also checkout really-awesome-gan and our COCO-Stuff dataset. For details which paper uses which dataset, please open the Google Drive document.

TuSimple-DUC - Understanding Convolution for Semantic Segmentation

  •    Python

by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. This repository is for Understanding Convolution for Semantic Segmentation (WACV 2018), which achieved state-of-the-art result on the CityScapes, PASCAL VOC 2012, and Kitti Road benchmark.

crfasrnn_keras - CRF-RNN Keras/Tensorflow version

  •    Python

This repository contains Keras/Tensorflow code for the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015 paper Conditional Random Fields as Recurrent Neural Networks. This paper was initially described in an arXiv tech report. The online demo of this project won the Best Demo Prize at ICCV 2015. Original Caffe-based code of this project can be found here. Results produced with this Keras/Tensorflow code are almost identical to that with the Caffe-based version. The root directory of the clone will be referred to as crfasrnn_keras hereafter.

robot-surgery-segmentation - Wining solution and its improvement for MICCAI 2017 Robotic Instrument Segmentation Sub-Challenge

  •    Jupyter

Here we present our wining solution and its improvement for MICCAI 2017 Robotic Instrument Segmentation Sub-Challenge. In this work, we describe our winning solution for MICCAI 2017 Endoscopic Vision Sub-Challenge: Robotic Instrument Segmentation and demonstrate further improvement over that result. Our approach is originally based on U-Net network architecture that we improved using state-of-the-art semantic segmentation neural networks known as LinkNet and TernausNet. Our results shows superior performance for a binary as well as for multi-class robotic instrument segmentation. We believe that our methods can lay a good foundation for the tracking and pose estimation in the vicinity of surgical scenes.

piwise - Pixel-wise segmentation on VOC2012 dataset using pytorch.

  •    Python

Pixel-wise segmentation on the VOC2012 dataset using pytorch. For a more complete implementation of segmentation networks checkout semseg.

OSVOS-PyTorch - PyTorch implementation of One-Shot Video Object Segmentation (OSVOS)

  •    Python

Check our project page for additional information. OSVOS is a method that tackles the task of semi-supervised video object segmentation. It is based on a fully-convolutional neural network architecture that is able to successively transfer generic semantic information, learned on ImageNet, to the task of foreground segmentation, and finally to learning the appearance of a single annotated object of the test sequence (hence one-shot). Experiments on DAVIS 2016 show that OSVOS is faster than currently available techniques and improves the state of the art by a significant margin (79.8% vs 68.0%).

FCIS - Fully Convolutional Instance-aware Semantic Segmentation

  •    Cuda

The major contributors of this repository include Haozhi Qi, Yi Li, Guodong Zhang, Haochen Zhang, Jifeng Dai, and Yichen Wei. FCIS is a fully convolutional end-to-end solution for instance segmentation, which won the first place in COCO segmentation challenge 2016.

OSVOS-TensorFlow - One-Shot Video Object Segmentation

  •    Python

Check our project page for additional information. OSVOS is a method that tackles the task of semi-supervised video object segmentation. It is based on a fully-convolutional neural network architecture that is able to successively transfer generic semantic information, learned on ImageNet, to the task of foreground segmentation, and finally to learning the appearance of a single annotated object of the test sequence (hence one-shot). Experiments on DAVIS 2016 show that OSVOS is faster than currently available techniques and improves the state of the art by a significant margin (79.8% vs 68.0%).

labelme - Image Polygonal Annotation with Python (polygon, rectangle, line, point and image-level flag annotation)

  •    Python

Labelme is a graphical image annotation tool inspired by http://labelme.csail.mit.edu. It is written in Python and uses Qt for its graphical interface. Fig 2. VOC dataset example of instance segmentation.