HyperGAN - A composable Generative Adversarial Network(GAN) with API and command line tool.

  •        73

A composable GAN API and CLI. Built for developers, researchers, and artists. HyperGAN is currently in open beta.




Related Projects

gan-playground - GAN Playground - Experiment with Generative Adversarial Nets in your browser

  •    TypeScript

GAN Playground lets you play around with Generative Adversarial Networks right in your browser. Currently, it contains three built-in datasets: MNIST, Fashion MNIST, and CIFAR-10. GAN Playground provides you the ability to set your models' hyperparameters and build up your discriminator and generator layer-by-layer. You can observe the network learn in real time as the generator produces more and more realistic images, or more likely, gets stuck in failure modes such as mode collapse.

All-About-the-GAN - All About the GANs(Generative Adversarial Networks) - Summarized lists for GAN

  •    Python

The purpose of this repository is providing the curated list of the state-of-the-art works on the field of Generative Adversarial Networks since their introduction in 2014. You can also check out the same data in a tabular format with functionality to filter by year or do a quick search by title here.

Generative-Adversarial-Networks - Tutorial on GANs

  •    Jupyter

My blog post on GANs and overview of some associated papers. Generative adversarial networks (GANs) are one of the hottest topics in deep learning. From a high level, GANs are composed of two components, a generator and a discriminator. The discriminator has the task of determining whether a given image looks natural (ie, is an image from the dataset) or looks like it has been artificially created. The task of the generator is to create natural looking images that are similar to the original data distribution, images that look natural enough to fool the discriminator network.

context-encoder - [CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

  •    Lua

If you could successfully run the above demo, run following steps to train your own context encoder model for image inpainting. Features for context encoder trained with reconstruction loss.

DiscoGAN-pytorch - PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

  •    Jupyter

PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in README.md are genearted by neural network except the first image for each row. * Network structure is slightly diffferent (here) from the author's code.

generative-models - Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

  •    Python

Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Generated samples will be stored in GAN/{gan_model}/out (or VAE/{vae_model}/out, etc) directory during training.

simulated-unsupervised-tensorflow - TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

  •    Python

TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial Training. Result of lambda=1.0 with optimizer=sgd after 8,000 steps.

Tensorflow-Tutorial - Tensorflow tutorial from basic to hard

  •    Python

In these tutorials, we will build our first Neural Network and try to build some advanced Neural Network architectures developed recent years. All methods mentioned below have their video and text tutorial in Chinese. Visit θŽ«ηƒ¦ Python for more.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

tensorlayer - Deep Learning and Reinforcement Learning Library for Developers and Scientists

  •    Python

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides a large collection of customizable neural layers / functions that are key to build real-world AI applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. Simplicity : TensorLayer lifts the low-level dataflow interface of TensorFlow to high-level layers / models. It is very easy to learn through the rich example codes contributed by a wide community.

T2F - T2F: text to face generation using Deep Learning

  •    Python

Text-to-Face generation using Deep Learning. This project combines two of the recent architectures StackGAN and ProGAN for synthesizing faces from textual descriptions. The project uses Face2Text dataset which contains 400 facial images and textual captions for each of them. The data can be obtained by contacting either the RIVAL group or the authors of the aforementioned paper. The code is present in the implementation/ subdirectory. The implementation is done using the PyTorch framework. So, for running this code, please install PyTorch version 0.4.0 before continuing.

PyTorch-Tutorial - Build your neural network easy and fast

  •    Jupyter

In these tutorials for pyTorch, we will build our first Neural Network and try to build some advanced Neural Network architectures developed recent years. Thanks for liufuyang's notebook files which is a great contribution to this tutorial.

PyTorch-GAN - PyTorch implementations of Generative Adversarial Networks.

  •    Python

Collection of PyTorch implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will not always mirror the ones proposed in the papers, but I have chosen to focus on getting the core ideas covered instead of getting every layer configuration right. Contributions and suggestions of GANs to implement are very welcomed. Synthesizing high resolution photorealistic images has been a long-standing challenge in machine learning. In this paper we introduce new methods for the improved training of generative adversarial networks (GANs) for image synthesis. We construct a variant of GANs employing label conditioning that results in 128x128 resolution image samples exhibiting global coherence. We expand on previous work for image quality assessment to provide two new analyses for assessing the discriminability and diversity of samples from class-conditional image synthesis models. These analyses demonstrate that high resolution samples provide class information not present in low resolution samples. Across 1000 ImageNet classes, 128x128 samples are more than twice as discriminable as artificially resized 32x32 samples. In addition, 84.7% of the classes have samples exhibiting diversity comparable to real ImageNet data.

tflearn - Deep learning library featuring a higher-level API for TensorFlow.

  •    Python

TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed-up experimentations, while remaining fully transparent and compatible with it. The high-level API currently supports most of recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, Generative networks... In the future, TFLearn is also intended to stay up-to-date with latest deep learning techniques.

TensorFlow-Machine-Learning-Cookbook - Code repository for TensorFlow Machine Learning Cookbook by Packt

  •    Python

This is the code repository for TensorFlow Machine Learning Cookbook, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish. TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You’ll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning – each using Google’s machine learning library TensorFlow.

deep-learning-book - Repository for "Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python"

  •    Jupyter

Repository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.