Distrib(uted) Processing Grid

  •        0

Distrib is a simple yet powerful distributed processing system.




Related Projects

Hazelcast Jet - Distributed data processing engine, built on top of Hazelcast

Hazelcast Jet is a distributed computing platform built for high-performance stream processing and fast batch processing. It embeds Hazelcast In Memory Data Grid (IMDG) to provide a lightweight package of a processor and a scalable in-memory storage. It supports distributed java.util.stream API support for Hazelcast data structures such as IMap and IList, Distributed implementations of java.util.{Queue, Set, List, Map} data structures highly optimized to be used for the processing

Apache Beam - Unified model for defining both batch and streaming data-parallel processing pipelines

Apache Beam is an open source, unified model for defining both batch and streaming data-parallel processing pipelines. Using one of the open source Beam SDKs, you build a program that defines the pipeline. The pipeline is then executed by one of Beam’s supported distributed processing back-ends, which include Apache Apex, Apache Flink, Apache Spark, and Google Cloud Dataflow.

Bagri - XML/Document DB on top of distributed cache

Bagri is a Document Database built on top of distributed cache solution like Hazelcast or Coherence. The system allows to process semi-structured schema-less documents and perform distributed queries on them in real-time. It scales horizontally very well with use of data sharding, when all documents are distributed evenly between distributed cache partitions.

Apache Storm - Distributed and fault-tolerant realtime computation

Storm is a distributed real time computation system. Storm makes it easy to reliably process unbounded streams of data, doing for real time processing what Hadoop did for batch processing. Storm has many use cases: realtime analytics, online machine learning, continuous computation, distributed RPC, ETL, and more.

Hypertable - A high performance, scalable, distributed storage and processing system for structured

Hypertable is based on Google's Bigtable Design, which is a proven scalable design that powers hundreds of Google services. Many of the current scalable NoSQL database offerings are based on a hash table design which means that the data they manage is not kept physically ordered. Hypertable keeps data physically sorted by a primary key and it is well suited for Analytics.

databus - Source-agnostic distributed change data capture system

In Internet architectures, data systems are typically categorized into source-of-truth systems that serve as primary stores for the user-generated writes, and derived data stores or indexes which serve reads and other complex queries. The data in these secondary stores is often derived from the primary data through custom transformations, sometimes involving complex processing driven by business logic. Similarly, data in caching tiers is derived from reads against the primary data store, but needs to get invalidated or refreshed when the primary data gets mutated. A fundamental requirement emerging from these kinds of data architectures is the need to reliably capture, flow and process primary data changes.We have built Databus, a source-agnostic distributed change data capture system, which is an integral part of LinkedIn's data processing pipeline. The Databus transport layer provides latencies in the low milliseconds and handles throughput of thousands of events per second per server while supporting infinite look back capabilities and rich subscription functionality.

Samza - Distributed Stream Processing Framework

Apache Samza is a distributed stream processing framework. It uses Apache Kafka for messaging, and Apache Hadoop YARN to provide fault tolerance, processor isolation, security, and resource management. It provides a very simple call-back based process message API that should be familiar to anyone who's used Map/Reduce. Samza was originally developed at LinkedIn. It's currently used to process tracking data, service log data, and for data ingestion pipelines for realtime services.

HPCC System - Hadoop alternative

HPCC is a proven and battle-tested platform for manipulating, transforming, querying and data warehousing Big Data. It supports two type of configuration. Thor is responsible for consuming vast amounts of data, transforming, linking and indexing that data. It functions as a distributed file system with parallel processing power spread across the nodes. Roxie, the Data Delivery Engine, provides separate high-performance online query processing and data warehouse capabilities.

Apache Flink - Platform for Scalable Batch and Stream Data Processing

Apache Flink is an open source platform for scalable batch and stream data processing. Flink’s core is a streaming dataflow engine that provides data distribution, communication, and fault tolerance for distributed computations over data streams.

Performance Co-Pilot - System Performance and Analysis Framework.

Performance Co-Pilot (PCP) provides a framework and services to support system-level performance monitoring and management. It presents a unifying abstraction for all of the performance data in a system, and many tools for interrogating, retrieving and processing that data. The distributed PCP architecture makes it especially useful for those seeking centralized monitoring of distributed processing.

tangle - A python framework for distributed data processing

A python framework for distributed data processing

Modular toolkit for Data Processing MDP

The Modular toolkit for Data Processing (MDP) is a Python data processing framework. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new i

jstorm - Enterprise Stream Process Engine

Alibaba JStorm is an enterprise fast and stable streaming process engine. It runs program up to 4x faster than Apache Storm. It is easy to switch from record mode to mini-batch mode. It is not only a streaming process engine. It means one solution for real time requirement, whole realtime ecosystem.

spindle - Next-generation web analytics processing with Scala, Spark, and Parquet.

Spindle is Brandon Amos' 2014 summer internship project with Adobe Research and is not under active development.Analytics platforms such as Adobe Analytics are growing to process petabytes of data in real-time. Delivering responsive interfaces querying this amount of data is difficult, and there are many distributed data processing technologies such as Hadoop MapReduce, Apache Spark, Apache Drill, and Cloudera Impala to build low-latency query systems.

snappydata - SnappyData: OLTP + OLAP Database built on Apache Spark

SnappyData is a distributed in-memory data store for real-time operational analytics, delivering stream analytics, OLTP (online transaction processing) and OLAP (online analytical processing) in a single integrated cluster. We realize this platform through a seamless integration of Apache Spark (as a big data computational engine) with GemFire XD (as an in-memory transactional store with scale-out SQL semantics).

genie - Distributed Big Data Orchestration Service

Genie is a federated job orchestration engine developed by Netflix. Genie provides REST-ful APIs to run a variety of big data jobs like Hadoop, Pig, Hive, Spark, Presto, Sqoop and more. It also provides APIs for managing the metadata of many distributed processing clusters and the commands and applications which run on them.See the official website to find documentation about Genie and specific documentation for various releases.


GIS vector-based spatial data overlay processing is much more complex than raster data processing. The GIS data ?les can be huge and their overlay processing is computationally intensive. Meager amount of work has been done on processing large volume of vector geospatial data ...

Hydra - Distributed processing framework for search solutions

Hydra is designed to give the search solution the tools necessary to modify the data that is to be indexed in an efficient and flexible way. This is done by providing a scalable and efficient pipeline which the documents will have to pass through before being indexed into the search engine. Architecturally Hydra sits in between the search engine and the source integration.

Cascalog - Data processing on Hadoop

Cascalog is a fully-featured data processing and querying library for Clojure or Java. The main use cases for Cascalog are processing "Big Data" on top of Hadoop or doing analysis on your local computer. Cascalog is a replacement for tools like Pig, Hive, and Cascading and operates at a significantly higher level of abstraction than those tools.